Regulation of Telomere Length Requires a Conserved N -Terminal Domain of Rif2 in Saccharomyces cerevisiae

Hannah Kaizer, ${ }^{1}$ Carla J. Connelly, ${ }^{1}$ Kelsey Bettridge, ${ }^{2}$ Christopher Viggiani, ${ }^{3}$ and Carol W. Greider ${ }^{4}$
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

ORCID ID: 0000-0002-5494-8126 (C.W.G.)

Abstract

The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2 Δ mutants but also in rif1 Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2 2 mutant phenotype. Substitution of F 8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation.

KEYWORDS telomeres; telomerase; Rif2; length regulation

THE establishment and maintenance of telomere length equilibrium is essential for cell survival. Yeast cells that fail to maintain telomeres undergo senescence (Lundblad and Szostak 1989), which is mediated by the DNA damage response to short telomeres (Enomoto et al. 2002; Ijpma and Greider 2003). In primary human cell cultures, short telomeres initiate replicative senescence (Harley et al. 1990; Bodnar et al. 1998) by signaling DNA damage (D'Adda di Fagagna et al. 2003). This cellular response to short telomeres underlies a spectrum of human diseases that includes bone marrow failure, pulmonary fibrosis, and immune senescence, collectively called the telomere syndromes (Armanios

[^0]and Blackburn 2012). Conversely, inappropriate telomere maintenance allows the survival of cancer cells (Kim et al. 1994), and mutations that increase telomerase expression predispose people to melanoma (Horn et al. 2013; Huang et al. 2013) and other cancers (Heidenreich et al. 2014). To fully address the role of telomeres in disease, a detailed mechanistic understanding of telomere length maintenance is critical.

Telomere sequence DNA repeats are bound by a set of proteins that mediate two essential functions: first, to protect the ends from degradation, recombination, and initiation of a damage response and second, to regulate telomere elongation by telomerase. Telomerase adds telomere repeats to chromosome ends to counterbalance the shortening that occurs during replication (Greider and Blackburn 1985), but this addition must be regulated. While the telomere-binding proteins in Saccharomyces cerevisiae and mammalian cells are not conserved in sequence, the function of telomere binding proteins limiting telomere elongation is conserved across eukaryotes (Smogorzewska and de Lange 2004). In yeast, deletion of the genes encoding the telomere binding proteins Rif1 and Rif2 leads to telomere elongation (Hardy et al. 1992; Wotton and Shore 1997). In mammals, removal of telomere binding proteins from the telomere, including TRF1, TRF2,
and POT1, also results in telomere elongation (van Steensel and de Lange 1997; Smith and de Lange 2000; Colgin et al. 2003; Veldman et al. 2004; Palm and de Lange 2008). The conservation of this negative length regulation pathway highlights the importance of understanding the mechanism that limits telomere elongation.

In yeast, the Rap1/Rif1/Rif2 protein complex binds to the double-stranded telomere repeats (Longtine et al. 1989; Hardy et al. 1992; Wotton and Shore 1997), and the Cdc13 complex (Lin and Zakian 1996; Nugent et al. 1996) binds to the single-stranded G-rich 3' overhang. Cdc13 interacts with Stn1 and Ten1 (Grandin et al. 1997, 2001) to form a RPA (Replication Protein A)-like trimeric complex (Gao et al. 2007) that regulates telomere elongation. In addition to these DNA binding complexes, there are other proteins that associate with telomeres and help regulate both end protection and telomere length. These include a number of proteins that are involved in DNA break repair and checkpoint signaling, such as the MRX (Mre11, Rad50, Xrs2) complex, the Ku70/80 heterodimer, and the Tel1/ATM protein kinase (Shore and Bianchi 2009; Wellinger and Zakian 2012).

In yeast, Rap1 recruits the Rif1 and Rif2 proteins that limit telomere elongation (Hardy et al. 1992; Marcand et al. 1997; Wotton and Shore 1997; Levy and Blackburn 2004). Deletion of either RIF1 or RIF2 results in long telomeres and deletion of the two together has an additive effect, resulting in very long telomeres. Rif1 and Rif2 bind to the C-terminal domain of Rap1, and deletion of this domain results in very long telomeres, similar to the rif1 Δ rif2 2 double mutant (Wotton and Shore 1997). This additive effect suggests these two proteins might use different mechanisms to limit telomere elongation.

A protein-counting model for negative regulation of telomere elongation was first proposed in yeast (Marcand et al. 1997). This model suggests the more Rap1/Rif1/Rif2 complexes that are bound along the telomere, the larger the repressive effect of telomere elongation. Thus, short telomeres have fewer repressive proteins bound and are more frequently elongated, whereas on longer telomeres, the Rap1/ Rif1/Rif2 exerts a strong repressive effect so these telomeres are elongated less frequently. Recruiting Rif1 and Rif2 to the telomere by fusion to other DNA binding domains also limits telomere elongation, indicating it is Rif1 and Rif2 function, rather than Rap1 per se, that limits telomere elongation (Levy and Blackburn 2004). The interplay of the preferential elongation of short telomeres (Bianchi and Shore 2008) and limiting the extent of elongation at long telomeres is thought to mediate the telomere length equilibrium.

The molecular mechanism by which Rif1 and Rif2 limit telomere elongation remains unclear. In mammalian cells, Rif1 was shown to play a role in replication fork progression (Buonomo et al. 2009) and in the timing of replication origin firing (Cornacchia et al. 2012; Yamazaki et al. 2012). This role in regulating origin firing is conserved in yeast (Lian et al. 2011; Mattarocci et al. 2014; Peace et al. 2014) where Rif1 also functions in regulating resection of double-strand breaks
and DNA recombination (Di Virgilio et al. 2013; EscribanoDiaz et al. 2013; Zimmermann et al. 2013).

Like RIF1, the RIF2 gene in yeast also plays a role in protecting chromosome ends from resection. rif2d mutants show increased single-stranded DNA at telomeres (Bonetti et al. 2010a) that requires the MRX complex and its regulator, the Tel1 kinase (Bonetti et al. 2010b). Moreover, in vitro experiments have suggested that Rif2 binds directly to the C-terminal region of Xrs2 and regulates telomere length through the Tel1 pathway (Hirano et al. 2009). Rif2 also protects telomeres from chromosome fusion events (DuBois et al. 2002), and the increased rate of senescence of telomerase mutants in the absence of RIF2 further supports a role for Rif2 in end protection (Chang et al. 2011; Ballew and Lundblad 2013; Hu et al. 2013). Whether this end-protection role of Rif2 is related to the telomere elongation phenotype of the rif2 Δ is not known.

The Rif2 protein structure was recently determined both alone and in complex with the C-terminal region of Rap1 (Shi et al. 2013). This structure revealed two different areas of contact between Rif2 and Rap1. The authors propose a Velcro model of interlocking protein interactions between Rap1, Rif1, and Rif2, which generate a chromatin scaffold that limits telomere elongation.

To more clearly define the molecular functions of Rif2, we carried out a mutagenesis screen across the entire RIF2 coding region. We describe here the identification of a domain in the N terminus that blocks telomere elongation by telomerase. Furthermore, mutation of a single amino acid in this domain mimics telomere lengthening seen in rif2 2Δ, suggesting that it is a critical residue for RIF2 function.

Materials and Methods

Construction of plasmids and yeast strains

All of the S. cerevisiae strains (termed "yeast strains") and oligonucleotides (termed "primers") for polymerase chain reaction (PCR) and for construction of plasmids used in this study are listed in Supporting Information, Table S1, Table S2, Table S3, Table S4, Table S5, and Table S6. All restriction enzymes used in these experiments were from New England Biolabs.

NAAIRS mutagenesis

We scanned the entire RIF2 gene substituting every six codons with the sequence specifying the amino acid sequence aspar-agine-alanine-alanine-isoleucine-arginine-serine (NAAIRS) in continuous blocks. RIF2 was amplified from yeast genomic DNA using primers Rif2-up and Rif2-down by PCR and the $1.67-\mathrm{kb}$ product was subcloned into pCR2.1-TOPO (Life Technologies) according to the manufacturer's instructions. RIF2 was then subcloned into pRS406 (Sikorski and Hieter 1989) using KpnI and EcoRI. This plasmid was used to generate 66 rif2NAAIRS mutants using a three-step PCR strategy (Mosher et al. 2006). Using the construction of NAAIRS2 as an example, the first PCR incorporated the sequence
encoding the NAAIRS amino acids at positions $2-7$ by amplifying the 5 ' end of RIF2 using NAAIRS2 reverse primer, Rif2 forward primer, and the template p406-Rif2. In the second PCR, the anti-NAAIRS2 forward primer, Rif2 reverse primer, and the template p406-Rif2 were used to amplify the remaining 3' end of RIF2, also incorporating the NAAIRS substitution at amino acids $2-7$. The PCR products from reactions 1 and 2 were diluted 1:100 and used as templates for amplification in a third PCR using Rif2 forward primer and Rif2 reverse primer. This generated a full-length rif2-NAAIRS2 product that was subcloned into pCR2.1-TOPO and then inserted into pRS406 using $K p n \mathrm{I}$ and EcoRI to generate pNAAIRS2. Using this approach, 66 plasmids with the NAAIRS amino acid sequences substituted for continuous blocks of six amino acids within RIF2 were constructed. All plasmids were confirmed by sequencing and are available upon request.

Integration of the RIF2-NAAIRS mutants at the URA3 locus

The parental diploid strain for the rif2 mutagenesis was derived from W303-1a and W303-1 α strains provided by O. Aparicio (OAy1002, OAy1003) (Viggiani and Aparicio 2006). RIF2 was deleted by PCR-based methods as described (Brachmann et al. 1998). Yeast strains containing the RIF2NAAIRS mutations were constructed by transforming a RIF2/ rif2 $24:$:kanMX4 diploid (CVy245) with the NAAIRS mutant plasmids cut with NcoI within the plasmid-borne URA3, which directs integration of the plasmid into the ura3-1 locus. Transformants were selected for Ura ${ }^{+}$. Proper integration into the yeast chromosome was confirmed by PCR. The resulting RIF2/rif2d::kanMX4, ura3-1/ura3-1::(rif2NAAIRS-URA3) strains were sporulated, dissected, and haploids of the desired genotype were grown for Southern blot analysis of telomere length. Following telomere length analysis the rif2NAAIRS integrant was PCR amplified from genomic DNA and sequenced to reconfirm the expected NAAIRS mutation. RIF2 was integrated at the URA3 locus to generate the wild-type control strain. Yeast culture conditions, transformations, and dissections were performed as described (Green and Sambrook 2012).

Epitope-tagged RIF2

We used two different epitope tags to determine the expression level of RIF2 mutants by Western analysis. We used a $13 x$ yyc epitope to tag the NAAIRS mutants at the URA3 locus and actin as a loading control. For the single amino acid mutants integrated at the RIF2 locus, we used a V5 epitope tag and phosphoglycerol kinase (PGK) as a loading control. We tagged RIF2 and specific rif2-NAAIRS mutants integrated at the URA3 locus by a one-step PCR-based method using pFA6a-13xMyc-His3MX6 (Longtine et al. 1998) using the Myc-tag forward primer and Myc-tag reverse primer. His ${ }^{+}$ integrants were verified by colony PCR. The RIF2 single amino acid mutants at the endogenous RIF2 locus were tagged with V5 epitope and constructed in the RIF2-V5
epitope-tagged plasmid pHK70. The plasmid was assembled according to the protocol: "Creating Insertions or Deletions Using Overlap Extension PCR Mutagenesis" (Green and Sambrook 2012). This construct was made in two steps using plasmid p406-Rif2 described above that contains the RIF2 coding region flanked by 245 bp of genomic sequences. The primers used for each of the steps are given in parentheses. The first step amplified the C terminus of RIF2 together with a glycine 8 (G8) linker (HK3, HK4), a unique NotI site (HK7, HK9), and V5 tag from pLenti6/UbC/V5-DEST Gateway Vector (Life Technologies) (HK5, HK6), which was cloned into p406-Rif2 cut with BspEI/NotI, creating pHK1. The second step used overlap extension to amplify the genomic region downstream of RIF2 (HK18, HK19), adjacent to the upstream region of RIF2 (HK20, HK15), and p406-Rif2 backbone, which included a KpnI site (HK16, HK17). This step removed some of the upstream region of RIF2 retaining a unique BsrGI site. After assembly, this product was cloned into pHK1 cut with restriction enzymes BsrGI and KpnI, creating pHK70. The product was sequence verified. Proper chromosomal integration of epitope-tagged RIF2 and NAAIRS mutants was confirmed by PCR.

Generation of single amino acid rif2 mutants

Single amino acid changes in the N-terminal region at positions 2-49 were generated in RIF2 in the plasmid pHK70 according to "Protocol 3: In Vitro Mutagenesis Using DoubleStranded DNA Templates: Selection of Mutants with DpnI" (Green and Sambrook 2012). To expedite this mutagenesis, some of the point mutants (pHK28-34, pHK37-64) were made by GENEWIZ. The region of each construct containing a rif2 mutation was PCR amplified and sequenced to confirm the presence of the desired mutation. Plasmids containing the rif2 mutants were cut using AfeI (except where indicated otherwise) and targeted to the RIF2 endogenous locus in OAy1002 by recombination. In cases where the mutation created an AfeI site (pHK3, pHK5-27, pHK51) plasmids were digested using BsrGI and integrated at the RIF2 locus in OAy1002. Proper integration of the rif2 mutants at the endogenous RIF2 locus was confirmed by PCR and verified by sequencing.

RAP1-RIF2 ${ }_{60}$ fusion constructs integrated at the RAP1 locus

We used Gibson assembly (Gibson 2011) to generate the integrating plasmid pHK35, containing the RAP1-RIF2 ${ }_{60}$ fusion gene. The final construct, based in the pRS405 vector, contains the following elements stitched together: the C-terminal region of RAP1 amplified from genomic DNA, fused to a flexible glycine 10 (G10) linker (HK89, HK98); the N-terminal 60 aa of Rif2, including a stop codon, from p406-Rif2 (HK97, HK94); the 250-bp CYC1 terminator from p414-GALS (ATCC87344) (HK117, HK118); the URA3 cassette from p406-Rif2 (HK93, HK96); and 176 bp of genomic DNA 3' of RAP1 to target to the construct to the RAP1 locus (HK95, HK90). The construct was sequence verified and then digested
with SacI/NotI and integrated at the RAP1 locus in CVy245 or HKy639. Ura ${ }^{+}$integrants were verified by colony PCR, sporulated, and tetrads were analyzed. Strains with the desired genotypes were selected for Southern and Western analysis.

The shorter version of the fusion protein, Rap1-Rif2 3_{36}, was created from pHK35 using the mutagenesis method described above for the generation of single amino acid changes removing codons 37-60 (HK121, HK123) to create pHK68. The plasmid was sequence verified, digested with SacI/NotI, and then integrated at the RAP1 genomic locus in HKy639. Ura ${ }^{+}$integrants were verified by PCR and diploids were sporulated to generate haploid cells of the specific genotype.

The mutant RAP1-RIF2 ${ }_{60} F 8 A, F 8 Y$, and $F 8 W$ fusion genes were created using the site-directed mutagenesis method described above for the generation of single amino acid changes using pHK35 as a template. The resulting plasmids (pHK65, pHK74, and pHK73, respectively) were sequenced, and those containing the desired mutations were digested with SacI/ NotI and integrated at the RAP1 genomic locus. Proper integration of the RAP1 fusion genes was verified by colony PCR and sequencing.

The RAP1 1 C-RIF2 ${ }_{60}$ fusion gene was created using Gibson assembly of two fragments: the region amplified from genomic DNA, which removes 498 bp from the end of RAP1 at amino acid 662 (HK128, HK129), and the region from pHK35, which contains the glycine10 linker-RIF2 ${ }_{60}$-CYC1 components (HK130, HK131) that were reassembled into pHK35 cut with NotI/BglII, creating pHK72. After sequence verification, the fusion construct was digested with NotI/SacI and introduced into the RAP1 genomic locus in HKy639 selecting Ura ${ }^{+}$integrants (HKy768, HKy769). As a control, a construct containing only rap1DC (HK128, HK132) that truncated the RAP1 gene at codon 662 was engineered in a similar fashion, creating pHK71. This plasmid was sequence verified and integrated at the RAP1 genomic locus in HKy639 selecting Ura+ integrants (HKy754, HKy755).

Generation of RIF1, XRS2, and TLC1 deletion strains

To generate the RIF1 deletion, the LEU2 cassette was amplified from pRS405 (OCC85, OCC86) (Brachmann et al. 1998) and integrated into the RIF1 locus of CVy245, yielding HKy639. Leu ${ }^{+}$integrants were verified by PCR before tetrad analysis. A diploid yeast strain containing XRS2/xrs2 $2 C t$ (yYM311), previously generated in our laboratory (Ma and Greider 2009), was transformed to delete the RIF2 locus using a PCR product containing the $L E U 2$ cassette from pRS405 (OCC122, OCC123) (Brachmann et al. 1998) to generate JHUy912. The Rap1-Rif2 ${ }_{60}$ fusion was introduced into these strains by transformation to replace the RAP1 locus as described above.

A deletion of TLC1 was introduced into RIF2/rif2D, RAP1/ rap1::(Rap1-Rif2 ${ }_{60}-$ URA3) (HKy551) by transformation of a PCR product from yeast strain YCC115 containing a tlc1$\Delta:$:LEU2 cassette (OCC168, OCC171) to generate two independent diploids HKy668 and HKy669. The Leu ${ }^{+}$integrants were verified by PCR.

Southern analysis and telomere length measurement

Strains for telomere length analysis were grown overnight at 30° in liquid medium yeast extract-peptone-dextrose (YPD). Five OD_{600} of cells were collected per sample and washed with water. Genomic DNA was prepared from each strain as follows: Cell pellets were ruptured by 8 min of vigorous shaking (Eppendorf mixer 5432) in equal volumes of 0.5 mm glass beads (Biospec Products), phenol-chloroform (50:50), and lysis buffer [1% sodium dodecyl sulfate (SDS), 2\% Triton X-100, 100 mM sodium chloride (NaCl), 10 mM Tris, pH $8.0,1 \mathrm{mM}$ ethylenediamine tetracetic acid (EDTA)]. DNA was precipitated in ethanol and resuspended at 37° in TE (10 mM Tris, pH 8.0, 1 mM EDTA) and RNaseA ($10 \mu \mathrm{~g} /$ ml). Samples were digested with XhoI and separated by electrophoresis on a 1% agarose gel in $1 \times$ TTE buffer ($20 \times=$ 1.78 M Tris base, 0.57 M taurine, 0.01 M EDTA). On each gel, 250 ng of 2-log DNA ladder (NEB N3200) was included as a reference. After electrophoresis was complete, the gel was denatured for 30 min [0.2 M sodium hydroxide (NaOH), 0.34 M NaCl] and neutralized ($1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M} \mathrm{Tris}$, 7.0) for 30 min before vacuum transfer (Boekel Appligene vacuum blotter) at 50 mbar onto Amersham Hybond-N+ membrane (GE Healthcare) in $10 \times$ SSC ($1.5 \mathrm{M} \mathrm{NaCl}, 0.17$ M sodium citrate) for 1 hr . After UV-crosslinking (UV Stratalinker 2400, Stratagene), the membrane was prehybridized for $1-2 \mathrm{hr}$ in Church buffer (0.5 M Tris, pH 7.2, 7% SDS, 1% bovine serum albumin, 1 mM EDTA) and hybridized with a radiolabeled subtelomeric Y^{\prime} fragment (750-bp fragment generated by PCR from yeast genomic DNA using primers YPrimeFWD and YPrimeREV) and radiolabeled 2-log DNA ladder probe. Hybridized nylon membranes were exposed to Storage Phosphor Screens (GE Healthcare) and scanned on a Storm 825 imager (GE Healthcare). The images were converted using Adobe Photoshop CS6 and adjusted for contrast using the curves feature within the software. In the represented Southern blots, the numbers on the x-axis indicate the sizes of the 2-log ladder in kilobases. The numbers on the y-axis represent the lane numbers in the agarose gel.

Western blot analysis

Yeast strains were grown at 30° in YPD until OD_{600} reached $0.4-0.6$. Whole cell protein lysates were prepared by trichloroacetic acid (TCA) extraction as follows: three OD_{600} of cells were collected and resuspended in 10 ml of 10% TCA for 30 min . After centrifugation, the TCA-treated cells were resuspended in 1 ml 1 M HEPES buffer, pH 7.5 and transferred into a microcentrifuge tube. Cells were pelleted and resuspended in $50 \mu \mathrm{l} 2 \times$ SDS-polyacrylamide gel electrophoresis (PAGE) sample buffer [125 mM Tris, pH 6.8, 4\% SDS, 20\% glycerol, 0.2 M dithiothreitol (DTT), 0.012% bromophenol blue dye (BPB)] then ruptured with an equal amount of 0.5 mm glass beads for 3 min on a high-speed vortex mixer. An additional $50 \mu \mathrm{l}$ of $2 \times$ SDS-PAGE buffer was added to each sample, followed by 5 min at 100° and 15 sec of vigorous shaking. The samples were centrifuged for

10 min at top speed in a microcentrifuge and the supernatant was collected and stored at -20°.

Whole cell lysate ($3 \mu \mathrm{l}$) was loaded per lane on a 10% TGX SDS-PAGE gel (Bio-Rad) along with molecular weight protein standards (Bio-Rad no. 161-0373) and resolved by electrophoresis. The proteins were transferred to $0.45 \mu \mathrm{~m}$ Immobilon-FL membrane (Millipore) according to recommended protocol (Bio-Rad). All Blue, Precision Plus protein standards (Bio-Rad no. 161-0373) were used as molecular weight markers. All transferred membranes were blocked in Odyssey blocking buffer (LI-COR) for 1 hr at room temperature (RT). The membranes were washed three times in $1 \times$ wash buffer (10 mM Tris, pH 8.0, $150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Triton X-100, 0.01\% IGEPAL CA-630; Sigma) for $15 \mathrm{~min}, 5 \mathrm{~min}$, and 5 min at RT. When using LI-COR detection, the final wash contained no detergents ($1 \times$ TBS: 10 mM Tris, $\mathrm{pH} 8.0,150$ $\mathrm{mM} \mathrm{NaCl})$. The $13 x M y c$ epitope was detected with a 1:10,000 dilution of anti-Myc 9E10 antibody (National Cell Culture Center, Minneapolis). Anti-actin (1:500 dilution of Anti-actin; Sigma A2066) and anti-PGK (1:10,000 dilution of anti-PGK; Invitrogen 459250) antibodies served as loading controls. The appropriate species IRDye secondary antibodies (LI-COR) were diluted at 1:15,000 in Odyssey blocking buffer and incubated for 2 hr at RT. Immunoblots were analyzed on an Odyssey infrared imaging system (LI-COR Biosystems) using the quantification software provided. The Rif2 protein levels of the samples were compared to the actin or the PGK loading control; this ratio in the wild type (WT) was set to 1 and the other samples were normalized to this value. The Rif2 protein level from two independent haploids was determined, and the average of these two values is reported in Figure 1.

The V5 epitope was detected with a 1:2000 dilution of antiV5 antibody (Invitrogen no. 460705) for 1 hr at RT. Anti-mouse immunoglobin G horseradish peroxidase (IgG-HRP)-linked secondary antibody (Cell Signaling Technologies no. 7076) was diluted 1:10,000 in 5\% milk (Bio-Rad), 0.05\% Triton X100, and incubated for 45 min at RT. SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific no. 34095) was used to detect the chemiluminescent signal on an ImageQuant LAS4000 mini (GE Healthcare). Since the loading control comigrated with the V5-tagged Rif2, the blots were stripped with Restore Western Blot Stripping Buffer for 25 min at room temperature (Thermo Scientific no. 21059), washed three times in $1 \times$ TBS as described above, and verified that no signal was present. After treating 30 min to 1 hr in Odyssey blocking buffer, the membranes were then incubated for 1 hr at RT with 1:10,000 of anti-PGK using the same IgG-HRP-secondary antibody as described. The Rif2 protein levels of the samples and loading controls were quantitated using ImageJ (Schneider et al. 2012) and normalized relative to WT levels.

Data availability

All strains and plasmids described here and in the Supporting Information are available upon request.

Results

Scanning mutagenesis of RIF2

To better understand the role of Rif2 in telomere length maintenance, we scanned the entire coding region of RIF2, substituting every 6 contiguous codons with a sequence encoding NAAIRS (Lonergan et al. 1998), generating a set of 66 rif2-NAAIRS mutants. The mutations were named for the first codon where the substitution begins. For example, NAAIRS2 substitutes codons $2-7$, and NAAIRS8 substitutes codons $8-13$. Each mutant was integrated into the yeast genome at the URA3 locus in a RIF2/rif2d heterozygous diploid and verified by sequencing. Wild-type RIF2 integrated at URA3, as a control, was able to complement a rif2d (data not shown). Telomere length was examined in rif2 2Δ :: kanMX4 ura3-1::rif2NAAIRS-URA3 haploid segregants by Southern blot and classified as wild type, long (similar to rif2d), or medium (between rif2 2 and wild type). There were a number of regions in RIF2 where NAAIRS mutations resulted in a long telomere phenotype similar to rif2 Δ (Figure 1 and Figure S1).

To determine whether the mutant proteins were expressed at wild-type levels, we tagged each of the mutants that showed long telomeres with a 13 xMyc tag and quantified Rif2 protein levels by Western analysis. As a control, we tagged a wildtype copy of RIF2 integrated at the URA3 locus and showed the $13 x M y c$ tag did not affect telomere length (Figure S2A). A number of the NAAIRS substitutions resulted in significantly reduced protein expression; for example, the mutations NAAIRS212 and NAAIRS338 (Figure S1A), disrupted protein stability, suggesting the long telomeres in these mutants were likely due to low Rif2 levels. However, there was a distinct subset of mutants in which wild-type or near wild-type protein levels were present and yet the NAAIRS substitution resulted in longer than wild-type length telomeres (Figure 1). Strikingly, 7 of 11 of the long or medium length mutants that expressed at least 50% protein levels were in the N-terminal domain of Rif2. We thus focused our attention on this N -terminal region.

While this work was underway, the Thoma lab reported the crystal structure of Rif2 protein and Rif2 complexed with the C-terminal domain of Rap1 (Shi et al. 2013). Rif2 contains a large central AAA+ domain with Walker A and Walker B motifs. The crystal structure revealed a C-terminal domain in Rif2 that interacts with Rap1 (Figure 2A). The N-terminal domain of the Rif2 protein from amino acid (aa) 1-60 was mostly unstructured but contained a short helix from T37K48 called the Rap1 Binding Motif (RBM). A peptide spanning Rif2 residues $30-49$ bound to the Rap1 C-terminal domain in solution. This peptide has two residues, L42 and L44, which have crystal contacts with the Rap1 C-terminal domain, while residues 49-60 were unstructured (Shi et al. 2013). As mentioned above, the block of NAAIRS mutations that affected protein function (NAAIRS2-NAAIRS44) was located in this unstructured N -terminal domain of Rif2.

Mutant	Phenotype	Protein expression
NAAIRS2	long	medium (0.52)
NAAIRS8	long	WT (1.49 $\pm 0.12)$
NAAIRS14	long	WT (0.74 $\pm 0.03)$
NAAIRS20	long	medium (0.53 ± 0.01)
NAAIRS26	medium	WT (0.78 ± 0.14)
NAAIRS32	long	low (0.44 ± 0.03)
NAAIRS38	medium	WT (2.12 $\pm 0.52)$
NAAIRS44	medium	WT (0.95 $\pm 0.13)$
NAAIRS50	wt	
NAAIRS56	wt	
NAAIRS62	wt	
NAAIRS68	wt	
NAAIRS74	long	Iow (0.34 ± 0.11)
NAAIRS80	medium	medium (0.55 ± 0.44)
NAAIRS86	long	medium (0.52 ± 0.03)
NAAIRS92	wt	
NAAIRS98	long	low (0.29 $\pm 0.04)$
NAAIRS104	long	low (0.29 ± 0.04)
NAAIRS110	long	low (0.15 $\pm 0.06)$
NAAIRS116	long	low (0.00 ± 0)
NAAIRS122	medium	WT (1.00 ± 0.01)
NAAIRS128	medium	low (0.19 $\pm 0.04)$
NAAIRS134	wt	
NAAIRS140	medium	low (0.33 ± 0.04)
NAAIRS146	wt	
NAAIRS152	wt	
NAAIRS158	wt	
NAAIRS164	wt	
NAAIRS170	wt	
NAAIRS176	wt	
NAAIRS182	wt	
NAAIRS188	wt	

Mutant	Phenotype	Protein expression
NAAIRS194 medium low (0.33 $\pm 0.03)$		
NAAIRS200	0 wt	
NAAIRS206	long	low (0.00 ± 0)
NAAIRS212	2 long	low (0.37 ± 0)
NAAIRS218	8 wt	
NAAIRS224	wt	
NAAIRS230	long	low (0.16 ± 0.02)
NAAIRS236	long	low (0.19 $\pm 0.04)$
NAAIRS242	2 long	low (0.23 $\pm 0.09)$
NAAIRS248	8 long	low (0.11 $\pm 0.02)$
NAAIRS254 wt		
NAAIRS260 wt		
NAAIRS266 wt		
NAAIRS272	2 long	low (0.00 ± 0)
NAAIRS278 wt		
NAAIRS284 wt		
NAAIRS290	0 long	low (0.00 ± 0)
NAAIRS296	6 long	low (0.22 $\pm 0.04)$
NAAIRS302	2 wt	WT (0.81 $\pm 0.12)$
NAAIRS308	8 long	low (0.00 ± 0)
NAAIRS314 wt		
NAAIRS320	0 long	low (0.38 ± 0)
NAAIRS326	6 medium	low (0.32 ± 0.01)
NAAIRS332	32 medium	low (0.22 $\pm 0.06)$
NAAIRS338	8 medium	low (0.26 $\pm 0.04)$
NAAIRS344	4 long	low (0.38 ± 0.06)
NAAIRS350	0 medium	low (0.18さ0.03)
NAAIRS356	6 long	low (0.02 ± 0.01)
NAAIRS362	2 long	low (0.20 00.02)
NAAIRS368	88 medium	low (0.50 00.03)
NAAIRS374	4 long	low (0.00 ± 0)
NAAIRS380 wt		
NAAIRS386	6 medium	WT (0.83 $\pm 0.04)$
NAAIRS392	2 wt	

Figure 1 Summary of telomere length and protein expression in rif2-NAAIRS mutants. The telomere length of each of the rif2-NAAIRS mutants was categorized as wild-type (WT), medium, or long. For mutants with medium or long telomeres, the rif2-NAAIRS construct was tagged with the $13 \times$ Myc epitope and the relative level of Rif2 protein was measured by Western analysis. For each mutant, protein level in two independent haploids was measured and normalized to the loading control and to wild-type Rif2 protein levels (see Materials and Methods). Each mutant was characterized as having WT ($>70 \%$), medium (50-70\%), or low expression level ($0-50 \%$). Highlighted mutants indicate those with either WT or medium Rif2 expression level and telomeres longer than WT. NAAIRS mutants that had WT telomere length were not retested to examine protein levels. Representative examples of Southerns and Westerns for these mutants are shown in Figure S1.

N-terminal rif2 point mutants have long telomeres

The N-terminal region of Rif2 is highly conserved among Saccharomyces (Figure 2B). To probe this region more closely, we substituted each individual residue from aa $2-37$ with alanine (or a different residue if alanine was the wild-type residue). These point mutants were tagged with a V5 epitope and integrated at the RIF2 genomic locus in haploid cells. The telomere length of two independent transformants of each mutant was compared to four controls: wild type, RIF2, rif2 2 , and the original NAAIRS mutant haploid strain (Figure 2C and Figure S3). Control experiments showed that the V5 tag did not affect telomere length at the wild-type RIF2 locus (Figure S2B). If discordant results were obtained with two independent transformants, additional transformants were analyzed to determine the effect of that mutant.

Mutations in six residues in the N-terminal region resulted in telomere elongation: D5, F8, I11, R12, R13, and D29 (Figure 2C and Figure S2C, also see Figure S3). Mutants in F8, I11, R12, and R13 were expressed at or just above wildtype levels, while D5 and D29 were slightly reduced (Figure

S2D). All of these residues fall within the unstructured region in the crystal structure (Shi et al. 2013). Remarkably, the single amino acid change F8A showed significant telomere lengthening comparable to both the six-codon change in rif2NAAIRS8 and rif2 2 (Figure 2C), suggesting this is a key residue in Rif2 that is critical for telomere length regulation. In addition to residues with a major effect, there were also residues that had smaller effects. For some NAAIRS mutants, such as rif2-NAAIRS14 and rif2-NAAIRS20, none of the single mutants affected telomere length, however when all six codons were mutated in combination, telomere lengthening was observed (Figure S3). These results are consistent with this region being a binding site for some protein, in which docking of the F8 residue is the most critical, and neighboring residues contribute to the interaction.

The N-terminal domain of Rif2 mediates telomere length regulation

Because the mutants in the N terminus of Rif2 mimic loss of function of the Rif2 protein, we next asked whether this

Figure 2 Point mutants in RIF2 disrupt protein function. (A) The domain structure of Rif2 protein is shown. The C-terminal region binds Rap1. There is an AAA+ domain that contains Walker A and B motifs (designated WA and WB). The N-terminal domain is not well structured but contains a short helix (RBM) that interacts with Rap1. The regions in white have no known structure. (B) The alignment of residues in the Rif2 Nterminal region from five Saccharomyces species is shown. Identical residues are highlighted in blue, those residues with strong similarity are in dark gray, and those with weak similarity in light gray. (C) Southern blot analysis of telomeres from rif2-NAAIRS8 and the six individual mutations within the rif2-NAAIRS8 mutant. The size markers on the side represent kilobases. Two independent haploid transformants for each single point mutant are shown.

N -terminal domain would function alone if tethered at the telomere. We generated a fusion gene encoding the N -terminal 60 codons of RIF2 fused to the C terminus of RAP1. We will refer to this construct as RAP1-RIF2 ${ }_{60}$ and to the resulting fusion
protein as Rap1-Rif2 ${ }_{60}$ (Figure 3A). We chose the N-terminal 60 aa of Rif2 because in the crystal structure the well-structured protein begins at residue 61 . To promote flexibility of the fusion domain, we added a glycine linker sequence between Rap1 and the Rif2 ${ }_{60}$ N-terminal domain. The RAP1RIF2 ${ }_{60}$ construct was transformed into a RIF2/rif2 2 heterozygous diploid and integrated at the RAP1 genomic locus. RIF2/ rif2 2 , RAP1/RAP1-RIF2 ${ }_{60}$ double heterozygotes were sporulated and telomere lengths were examined in two independent spores as well as in the diploids. Remarkably, the RAP1RIF2 ${ }_{60}$ construct fully suppressed the telomere lengthening in a rif2d mutant (Figure 3B, lanes 4 and 5). Moreover, this domain dominantly shortened telomeres since telomeres were shorter in the heterozygous diploid RIF2/rif2 2Δ containing the RAP1-RIF2 ${ }_{60}$ construct than in the parental diploid (Figure 3B, lanes 2 and 3). This shortening effect was also observed in haploid cells. Wild-type cells expressing the fusion had telomeres shorter than wild-type cells without the fusion (Figure 3B, lanes 6 and 7). This gain-of-function effect may result from alteration of the regulated cell cycle dissociation of Rif2 from the telomere (Smith et al. 2003), as discussed below. The suppression of the rif 2Δ phenotype by the RAP1RIF2 ${ }_{60}$ construct suggests that tethering this functional domain of Rif2 at the telomere blocks excessive telomere elongation.

Rif1 and Rif2 act through different pathways to limit telomere extension (Wotton and Shore 1997). To test whether the RAP1-RIF2 ${ }_{60}$ construct would also block rif1D telomere elongation, we generated a triple heterozygous diploid: RIF1/rif1 Δ, RIF2/rif2 Δ, RAP1/RAP1-RIF2 ${ }_{60}$. Telomere length was measured in two independent haploids of each genotype (Figure 3C). The Rap1-Rif2 ${ }_{60}$ fusion protein fully suppressed the long telomeres in both rif1 Δ and rif1 Δ rif2 2 mutants.

We noted that there was a slight difference in telomere length in rif1 Δ rif2 2Δ cells compared to rif2d cells expressing the fusion construct (Figure 3C, compare lanes 10 and 11 to lanes 18 and 19). To test whether this difference was due to insufficient cell divisions needed to reach steady state, we passaged cells four times in subcultures. The telomere length of each mutant expressing the fusion protein was stable over the successive passages (Figure S4). The slight difference in final telomere length in rif1 Δ or rif2d mutants expressing the RAP1-RIF2 ${ }_{60}$ construct might reflect the fact that Rif1 affects telomere length through a different pathway than Rif2 (Wotton and Shore 1997).

To determine whether telomere shortening in cells expressing the RAP1-RIF2 ${ }_{60}$ construct was working through the telomerase pathway we deleted the telomerase RNA component, TLC1, in a RIF2/rif2 4 , RAP1/RAP1-RIF2 ${ }_{60}$ diploid. Telomere elongation in rif2 Δ mutants was blocked by the loss of telomerase (Figure S5), as shown previously (Teng et al. 2000). Expression of the RAP1-RIF2 ${ }_{60}$ fusion in tlc1 Δ had little effect on telomere length, while tlc1 Δ rif2 2Δ cells not expressing the fusion construct had slightly longer telomeres than those expressing the construct (Figure S5A, compare lanes 10 and 11 to lanes 12 and 13). While this slight

Figure 3 Rap1-Rif2 ${ }_{60}$ fusion protein blocks telomere elongation. (A) Schematic of Rap1-Rif2 ${ }_{60}$ fusion protein. The full-length RAP1 coding region was fused in frame to a glycine 10 linker followed by the first 60 codons of RIF2. (B) rif2 2 mutants expressing the RAP1-RIF2 60 Construct. The genotype of the strain is indicated in each lane and the presence or absence of the fusion protein is shown with $a+$ sign in each lane. The parental diploid was transformed with the fusion construct to yield the heterozygous diploid (Het. diploid) and was dissected to generate the haploid segregants. (C) Expression of RAP1-RIF2 ${ }_{60}$ construct in rif1 Δ mutants and rif1 Δ rif2 Δ mutants. The genotype of the strain is indicated in each lane and the presence or absence of the fusion protein is show with $a+$ sign. The size markers on the side represent kilobases.
difference could be due to effects of the fusion protein on other telomere maintenance pathways, we suspect it is due to increased telomere recombination in the tlc 1Δ rif2 2 cells. The loss of Rif2 in a telomerase mutant has previously been shown to promote recombination and accelerate survivor formation (Teng et al. 2000; Chang et al. 2011; Ballew and Lundblad 2013; Hu et al. 2013). We found that the rapid appearance of survivors in tlc14 rif2a cells led to slightly longer bulk telomere bands than tlc14 (Figure S5B, compare lanes 4 and 5 to lanes 6 and 7). Expression of the fusion construct may delay telomere recombination. Taken together, the telomere shortening caused by the Rap1-Rif2 ${ }_{60}$ fusion protein and the requirement for telomerase indicate that this small domain of Rif2 can block telomere overelongation by telomerase in both rif1 Δ and rif2 2 mutants. We will refer to this functional N-terminal domain as the BAT domain for Blocks Addition of Telomeres.

The function BAT domain does not require interaction with the RAP1 C-terminal domain

The N-terminal 60 amino acids of Rif2 include a small helical domain termed RBM between positions T37 and K48 that makes crystal contacts with the C-terminal domain of Rap1
(Shi et al. 2013). To determine whether the binding to the Rap1 C terminus is required for the function of the BAT domain we took two approaches: first, we removed the C terminus of Rap1, and second, we created a fusion protein with a shorter version of the BAT domain that lacks the RBM region (Figure 4A).

We generated a new fusion construct (termed rap1 14 RIF2 $_{60}$) in which the Rap1 C terminus is truncated at amino acid 662 with the Rif2 BAT domain fused to the Rap1 DNA binding domain. The expression of the rap14C-RIF2 ${ }_{60}$ fusion completely suppressed the long telomere phenotype in rif1 Δ, rif2 2 , and rif1 1 rif2 2 mutants (Figure 4B). This result indicates the BAT domain does not need the Rap1 C terminus to block telomere elongation. As a control, in the same strain, we generated a Rap $1 \Delta \mathrm{C}$-truncated at amino acid 662 that lacks Rif2 BAT domain. As expected, expression of the Rap1Δ C-truncation showed long telomeres and did not rescue telomere length in rif1 Δ, rif2 Δ, or rif14 rif2 Δ (Figure S6).

Next we examined a fusion with a shortened BAT domain, rap $1 \Delta C-$ RIF 2_{36}, which lacks the RBM residues (Figure 2). Expression of Rap1-Rif2 3_{36} fully blocked telomere elongation in rif1 Δ, rif2 2 , and rif1 Δ rif2 2 mutants (Figure 4, C and D). While this RAP1-RIF2 ${ }_{36}$ construct restored wild-type telomere
A

Rap1-Rif260		
Rap1	Cto	Rit200
Rap14C-Rif260		
Rap1	R12200	
Rap1-Rif236		
Rap1	CTD	2123

Figure 4 The C-terminal domain of Rap1 is not required for BAT domain function. (A) Schematic of three fusion protein constructs. (B) rif14, rif2A, and rif1 1Δ rif2 2 double mutants expressing rap $1 \Delta C-R I F 2_{60}$ construct were analyzed by Southern blot. The genotype of the strain is indicated above each lane and the presence or absence of the fusion construct is shown with a + sign in each lane. (C) rif 2Δ mutants expressing the fusion construct with a shortened Rif2 N terminus, RAP1-RIF2 ${ }_{36}$. The genotype of the strain is indicated above each lane and the presence or absence of either the RAP1-RIF2 ${ }_{36}$ construct or RAP1-RIF2 ${ }_{60}$ construct is shown with a + sign. (D) rif1 1 and rif1A rif2d double mutants expressing the shortened Rif2 N terminus, RAP1$R I F 2_{36}$. The genotype of the strain is indicated above each lane and the presence or absence of either the RAP1-RIF2 3_{66} construct or the RAP1-RIF2 ${ }_{60}$ construct is shown with a + sign. The size markers on the side represent kilobases.
length, it did not cause shortening below wild-type length like the RAP1-RIF2 ${ }_{60}$ construct (Figure 4, C and D). This lesser degree of telomere shortening by the RAP1-RIF2 36 compared to the RAP1-RIF2 ${ }_{60}$ could be due to a slightly reduced accessibility or flexibility of this shorter domain. The
lack of requirement for the Rap1 C-terminal domain, together with the ability of the RAP1-RIF2 3_{36} to fully restore wild-type telomere length, suggest that the BAT domain of Rif2 does not require the presence of the Rap1 C terminus to affect telomere shortening.

XRS2 C terminus does not mediate the function of the Rif2 BAT domain

Recent studies have suggested that Rif2 binds to the C-terminal region of Xrs2 and that this blocks Tel1 telomere association, thereby limiting telomere elongation (Hirano et al. 2009). To determine whether the C-terminal domain of $X R S 2$ is required for the ability of the BAT domain to limit telomere length, we introduced the RAP1-RIF2 ${ }_{60}$ construct into a doubly heterozygous strain RIF2 $2 /$ rif 2Δ XRS $2 / x r s 2 \Delta C t$ expressing an Xrs2 C-terminal truncation protein that fails to bind Tel1 (Ma and Greider 2009) and examined telomeres in the single and double mutant haploid segregants. Expression of the Rap1-Rif2 ${ }_{60}$ fusion protein resulted in significant shortening in the rif2 2Δ xrs $2 \Delta C t$ cells (Figure 5, lanes 16 and 17). These results suggest that the Rif2 BAT domain can regulate telomere length independent of the Xrs2 C-terminal domain.

Mutations at F8 abolish the shortening effect of the Rap1-Rif2 ${ }_{60}$ fusion protein

In the NAAIRS scanning mutagenesis experiments, we identified the F 8 residue as playing a major role in Rif2 function. To determine if this amino acid was also important in the effect of the Rap1-Rif2 ${ }_{60}$ protein, we made a fusion construct containing this F8A substitution. When this mutant RAP1-rif2 ${ }_{60}$ [F8A] fusion construct was expressed in a rif2d background, telomere shortening did not occur (Figure 6A, lanes 14 and 15), indicating the RAP1-rif2 ${ }_{60}$ [F8A] mutation renders the BAT domain nonfunctional. Curiously, long telomeres were seen when the RAP1-rif2 ${ }_{60}$ [F8A] fusion construct was expressed in wild-type haploids (Figure 6A, lanes 9 and 10), suggesting that tethering the mutant BAT domain to Rap1 dominantly interferes with normal length regulation. Since this construct is the only copy of RAP1 in the cell, all of the telomeres should be bound by the Rap1-Rif2 ${ }_{60}$ [F8A] protein and thus may interfere with the function of the wild-type Rif2.

Aromatic amino acid tryptophan can mimic phenylalanine at F8

The functional importance of the $F 8 A$ mutation in both the RIF2 gene and in the RAP1-rif2 ${ }_{60}$ [F8A] fusion suggests this region may be a protein-protein interaction site. To test whether aromatic phenylalanine may be specifically recognized, we substituted this amino acid with either of the aromatic amino acids, tryptophan or tyrosine. Remarkably, the RAP1-rif2 ${ }_{60}$ [F8W] restored telomere shortening in rif2 2 , rif1 Δ, and rif1 Δ rif2 Δ (Figure 6, C and D), indicating an aromatic amino acid can at least partially restore the function of the BAT domain. The RAP1-rif2 ${ }_{60}[F 8 Y]$ mutation more closely resembled the RAP1-rif2 ${ }_{60}$ [F8A] mutant, suggesting this residue may interfere with function. These experiments support the model that the F8 aromatic residue in the BAT domain is an important binding determinant for an as yet unknown protein that limits telomere elongation.

Figure 5 Xrs2 C terminus is not required for the Rif2 BAT domain to shorten telomeres. Southern blot telomere analysis of xrs2 2 Ct and rif2 2 xrs $2 \Delta \mathrm{Ct}$ cells expressing RAP1-RIF2 ${ }_{60}$ construct. The genotype of the strain is indicated above each lane and the presence or absence of the RAP1-RIF2 ${ }_{60}$ construct is shown with a + sign. The size markers on the side represent kilobases.

Discussion

To probe the mechanism of telomere length regulation, we carried out scanning mutagenesis of RIF2 and identified an N terminal domain that is essential for blocking telomere elongation. The substitution of a single amino acid, F8A, within the BAT domain mimicked the long telomeres in a rif $2 \Delta \mathrm{mu}-$ tant. Further, tethering this 60 amino acid domain to Rap1 fully blocked telomere elongation. The F8 residue was essential for blocking excess elongation, as the RAP1-RIF2 ${ }_{60}$ [F8A] fusion did not block telomere elongation in rif2d mutants. These results imply the BAT domain regulates telomere length by a similar mechanism in the context of either fulllength RIF2 or as an isolated domain tethered to RAP1.

The Rap1/Rif1/Rif2 scaffold is not essential to block telomere elongation

Our results suggest the recently proposed molecular Velcro model for telomere length regulation may be incomplete. In this Velcro model, Rif1, Rif2, and Rap1 are suggested to generate an interlocking molecular scaffold that limits telomerase access to the telomere (Shi et al. 2013). Specifically Rif2 is proposed to contribute to the scaffold by bridging two Rap1 molecules, binding one through the RBM and the other through the AAA+ domain. Rif1 is likewise proposed to make contact with two Rap1 molecules to further support the scaffold. While our data do not address whether this scaffold forms in wild-type cells, they do suggest that such a structure is not required to block the elongation of telomeres by telomerase.

A

C

D

Figure 6 Aromatic residue at position 8 is important for Rif2 BAT domain function. (A) Southern blot telomere analysis of WT and rif2 2Δ cells expressing either RAP1-RIF2 ${ }_{60}$ or RAP1-rif2 ${ }_{60}$ [F8A] mutant fusion construct. The genotype of the strain is indicated above each lane and the presence or absence of the given fusion protein is shown with a + sign. (B) Southern blot telomere analysis of RIF1 RIF2, rif2A, rif14, and rif14 rif2 2 mutants expressing RAP1-rif2 ${ }_{60}$ [F8A] fusion or no fusion. The genotype of the strain is indicated above each lane and the presence or absence of the RAP1-rif2 ${ }_{60}$ [F8A] is shown with a + sign. The parental diploid was transformed with the fusion construct to yield the heterozygous diploid (Het. diploid) and dissected for the haploid segregants. (C) Southern blot telomere analysis of WT, rif24, rif14, and rif14 rif24 mutants expressing RAP1rif2 ${ }_{60}$ [F8W] fusion. The genotype of the strain is indicated above each lane and the presence of the RAP1-rif2 $_{60}$ [F8W] is shown with a + sign. (D) Southern blot telomere analysis of WT, rif2A, rif14, and rif14 rif2s mutants expressing RAP1-rif2 ${ }_{60}$ [F8Y] fusion. The genotype of the strain is indicated above each lane and the presence of RAP1-rif2 ${ }_{60}$ [F8Y] fusion protein is shown with a + sign. The size markers on the side represent kilobases.

BAT domain as a functional protein-binding site

The modular nature of the BAT domain, and the critical F8 residue, suggests that this region of Rif2 may be a proteinprotein interaction domain. The high conservation of the BAT domain in Saccharomyces (Figure 2B) further supports a role in protein binding. We propose that the F8 residue is the critical determinant in a binding site and that surrounding amino acids also contribute to important protein contacts. When residues near F8 were singly mutated, there was less effect on telomere length than when they were mutated together as groups of six residues (Figure 2). This additive effect was also seen in the NAAIRS2, NAAIRS14, and NAAIRS20 mutants, in which the single amino acid changes did not have as strong an effect as the group of 6 mutations (Figure S3). This finding suggests that there is a protein interaction interface over a region surrounding F8, and this aromatic residue is the key player in a protein interaction. The BAT domain may recruit an unknown protein as described
below or it may interact directly with known proteins such as Cdc13, Stn1, Ten1, or telomerase to block elongation. We ruled out the Xrs2 C-terminal domain as playing a major role (Hirano et al. 2009) since Xrs2 C-terminal truncations still showed telomere shortening with the Rap1-Rif2 ${ }_{60}$ fusion protein.

The Rap1-Rif2 ${ }_{60}$ fusion causes telomere shortening

The dominant effect of the Rap1-Rif2 ${ }_{60}$ fusion in diploid cells and its ability to shorten telomeres in haploids may be due to altered cell cycle regulation, altered affinity, loss of end protection, or a combination of these factors. The cell cycle-regulated associations of Rap1 and Rif2 with the telomere differ; Rap1 telomere association increases while Rif2 decreases in late S-phase (Smith et al. 2003). It may be this dissociation of Rif2 in late S-phase that allows telomere elongation. In our experiment, by tethering the functional BAT domain of Rif2 to Rap1, this dissociation at late S-phase cannot occur and thus telomere elongation may be more efficiently blocked.

The Rap1-Rif2 ${ }_{60}$ fusion also shortened telomeres in a rif1 Δ mutant. Rif1 regulates telomere elongation through a mechanism independent of Rif2, thus the ability of the Rap1Rif2 ${ }_{60}$ to block telomerase elongation after the loss of Rif1 suggests that the mechanism by which BAT blocks telomere elongation is not pathway specific. Experiments by Levy and Blackburn (2004) also showed that both the rif1D and rif2d long telomere phenotypes could be counteracted by overexpression of a Rap1-PDZ fusion protein that allows multimerization of Rap1. This further suggests that while Rif1 and Rif2 may normally act through different pathways, strengthening just one of those pathways may be sufficient to block telomere over elongation.

Putting the pieces together: a model for Rif2 BAT domain function

Our data suggest that the BAT domain of Rif2 is a proteinbinding domain that limits telomere elongation by telomerase. This domain may directly block telomere elongation or may recruit another protein that binds to the F8 residue in the BAT domain and blocks telomere elongation as depicted in Figure 7A. When Rif2 is missing, telomerase can overextend the telomeres (Figure 7B). However tethering the BAT domain directly to Rap1 restores and even strengthens the block to telomerase (Figure 7C). The specific mechanism by which the BAT domain blocks telomerase elongation is not clear; it might directly interfere with the catalytic subunit Est2 recruitment or it could affect elongation indirectly by altering telomere processing or C -strand synthesis. In addition to blocking telomerase, Rif2 plays a role in end protection. Rif2 blocks telomere recombination (Teng et al. 2000), thereby delaying survivors (Chang et al. 2011; Ballew and Lundblad 2013; Hu et al. 2013). Rif2 also protects telomeres from fusion (DuBois et al. 2002) and from nuclease processing (Bonetti et al. 2010a). The increased rate of telomere sequence turnover in rif 2Δ mutants (Krauskopf and Blackburn 1996) likely reflects the combined effects of increased telomere degradation, elongation, and recombination. It is not yet clear whether the functions of Rif2 in end protection and in blocking telomerase elongation are separable or are the result of one mechanism. Our data support the role of Rif2 in blocking telomere recombination in telomerase mutants (Figure S5) and suggest that the BAT domain plays a role in this function.

Telomere length regulation throughout evolution

The negative regulation of telomere elongation in length homeostasis is conserved throughout evolution. While Rif2 protein sequence is not conserved from yeast to humans, the loss of telomere binding proteins leads to telomere elongation in mammals as well (Palm and de Lange 2008). Rif2 in S. cerevisiae is a paralog of the conserved Orc4 protein (Byrne and Wolfe 2005). Analysis of synteny indicates that Rif2 was generated by divergence after a whole genome duplication that occurred early in the Saccharomyces lineage (Barnett 2004). Interestingly, the sequence conservation of RIF2 and

Figure 7 Model for separation of function of Rif2 and the BAT domain. In RIF2 cells, the Rap1 protein, shown in green, binds to the telomeric double-stranded DNA and the C-terminal domain (dark green) recruits Rif1 (not shown for simplicity) and Rif2 (purple). Rif2 binds the Rap1 Cterminal domain and blocks nuclease activity and telomerase elongation. The N-terminal BAT domain of Rif2 (dark purple) contains a critical phenylalanine residue. The F8 residue in the BAT domain serves as a protein recognition motif for a critical protein (Prot. X) that limits telomerase elongation of the telomere. (B) In rif2 2Δ telomerase elongation is not blocked by Rif2. (C) When the BAT domain is fused directly to the Rap1 C-terminal region in the RAP1-RIF2 ${ }_{60}$ fusion construct, even in a rif2 Δ mutant, there is strong blocking of telomerase.

ORC4 (Marcand et al. 2008) does not include the BAT domain, suggesting RIF2 acquired this regulatory module after the duplication and divergence from ORC4. This functional BAT domain, which limits telomere elongation, may be a conserved feature of telomere length regulation; however it may be attached to different telomere proteins in different organisms. A regulatory motif with similar function to the BAT domain may be present on other proteins and may contribute to conservation of the telomere length equilibrium mechanism across species.

Acknowledgments

We thank Brendan Cormack and Rebecca Keener for critical reading of the manuscript. This work was supported by National Institutes of Health 5R01GM043080 to C.W.G. and by support to the Johns Hopkins Telomere Center.

Literature Cited

Armanios, M., and E. H. Blackburn, 2012 The telomere syndromes. Nat. Rev. Genet. 13: 693-704.
Ballew, B. J., and V. Lundblad, 2013 Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast. Aging Cell 12: 719-727.

Barnett, J. A., 2004 A history of research on yeasts 8: taxonomy. Yeast 21: 1141-1193.
Bianchi, A., and D. Shore, 2008 How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol. Cell 31: 153-165.
Bodnar, A. G., M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu et al., 1998 Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349-352.
Bonetti, D., M. Clerici, S. Anbalagan, M. Martina, G. Lucchini et al., 2010a Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet. 6: e1000966.
Bonetti, D., M. Clerici, N. Manfrini, G. Lucchini, and M. P. Longhese, 2010b The MRX complex plays multiple functions in resection of Yku- and Rif2-protected DNA ends. PLoS One 5: e14142.
Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li et al., 1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
Buonomo, S. B., Y. Wu, D. Ferguson, and T. de Lange, 2009 Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J. Cell Biol. 187: 385-398.
Byrne, K. P., and K. H. Wolfe, 2005 The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15: 1456-1461.
Chang, M., J. C. Dittmar, and R. Rothstein, 2011 Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat. Struct. Mol. Biol. 18: 451-456.
Colgin, L. M., K. Baran, P. Baumann, T. R. Cech, and R. R. Reddel, 2003 Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13: 942-946.
Cornacchia, D., V. Dileep, J. P. Quivy, R. Foti, F. Tili et al., 2012 Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 31: 3678-3690.
d'Adda di Fagagna, F., P. M. Reaper, L. Clay-Farrace, H. Fiegler, P. Carr et al., 2003 A DNA damage checkpoint response in telo-mere-initiated senescence. Nature 426: 194-198.
Di Virgilio, M., E. Callen, A. Yamane, W. Zhang, M. Jankovic et al., 2013 Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339: 711-715.
DuBois, M. L., Z. W. Haimberger, M. W. McIntosh, and D. E. Gottschling, 2002 A quantitative assay for telomere protection in Saccharomyces cerevisiae. Genetics 161: 995-1013.
Enomoto, S., L. Glowczewski, and J. Berman, 2002 MEC3, MEC1, and $D D C 2$ are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell 13: 2626-2638.
Escribano-Diaz, C., A. Orthwein, A. Fradet-Turcotte, M. Xing, J. T. Young et al., 2013 A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49: 872-883.
Gao, H., R. B. Cervantes, E. K. Mandell, J. H. Otero, and V. Lundblad, 2007 RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14: 208-214.
Gibson, D. G., 2011 Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 498: 349-361.
Grandin, N., S. I. Reed, and M. Charbonneau, 1997 Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11: 512-527.
Grandin, N., C. Damon, and M. Charbonneau, 2001 Ten1 functions in telomere end protection and length regulation in association with $\operatorname{Stn} 1$ and Cdc13. EMBO J. 20: 1173-1183.
Green, M., and J. Sambrook, 2012 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Greider, C. W., and E. H. Blackburn, 1985 Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405-413.
Hardy, C. F., L. Sussel, and D. Shore, 1992 A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6: 801-814.
Harley, C. B., A. B. Futcher, and C. W. Greider, 1990 Telomeres shorten during ageing of human fibroblasts. Nature 345: 458460.

Heidenreich, B., P. S. Rachakonda, K. Hemminki, and R. Kumar, 2014 TERT promoter mutations in cancer development. Curr. Opin. Genet. Dev. 24: 30-37.
Hirano, Y., K. Fukunaga, and K. Sugimoto, 2009 Rif1 and Rif2 inhibit localization of Tel1 to DNA ends. Mol. Cell 33: 312322.

Horn, S., A. Figl, P. S. Rachakonda, C. Fischer, A. Sucker et al., 2013 TERT promoter mutations in familial and sporadic melanoma. Science 339: 959-961.
Hu, Y., H. B. Tang, N. N. Liu, X. J. Tong, W. Dang et al., 2013 Telomerase-null survivor screening identifies novel telomere recombination regulators. PLoS Genet. 9: e1003208.
Huang, F. W., E. Hodis, M. J. Xu, G. V. Kryukov, L. Chin et al., 2013 Highly recurrent TERT promoter mutations in human melanoma. Science 339: 957-959.
IJpma, A., and C. W. Greider, 2003 Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol. Biol. Cell 14: 987-1001.
Kim, N. W., M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West et al., 1994 Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2014.
Krauskopf, A., and E. H. Blackburn, 1996 Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383: 354-357.
Levy, D. L., and E. H. Blackburn, 2004 Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol. Cell. Biol. 24: 10857-10867.
Lian, H. Y., E. D. Robertson, S. Hiraga, G. M. Alvino, D. Collingwood et al., 2011 The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol. Biol. Cell 22: 1753-1765.
Lin, J. J., and V. A. Zakian, 1996 The Saccharomyces Cdc13 protein is a single-strand TG1-3 telomeric DNA- binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93: 13760-13765.
Lonergan, K. M., O. Iliopoulos, M. Ohh, T. Kamura, R. C. Conaway et al., 1998 Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B / C and Cul 2 . Mol. Cell. Biol. 18: 732-741.
Longtine, M., N. Wilson, M. Petracek, and J. Berman, 1989 A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr. Genet. 16: 225-239.
Longtine, M. S., A. McKenzie, 3rd, D. J. Demarini, N. G. Shah, A. Wach et al., 1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953-961.
Lundblad, V., and J. W. Szostak, 1989 A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633-643.
Ma, Y., and C. W. Greider, 2009 Kinase-independent functions of TEL1 in telomere maintenance. Mol. Cell. Biol. 29: 5193-5202.
Marcand, S., E. Gilson, and D. Shore, 1997 A protein-counting mechanism for telomere length regulation in yeast. Science 275: 986-990.
Marcand, S., B. Pardo, A. Gratias, S. Cahun, and I. Callebaut, 2008 Multiple pathways inhibit NHEJ at telomeres. Genes Dev. 22: 1153-1158.

Mattarocci, S., M. Shyian, L. Lemmens, P. Damay, D. M. Altintas et al., 2014 Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Reports 7: 62-69.
Mosher, R. A., W. E. Durrant, D. Wang, J. Song, and X. Dong, 2006 A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18: 1750-1765.
Nugent, C. I., T. R. Hughes, N. F. Lue, and V. Lundblad, 1996 Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274: 249-252.
Palm, W., and T. de Lange, 2008 How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42: 301-334.
Peace, J. M., A. Ter-Zakarian, and O. M. Aparicio, 2014 Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9: e98501.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri, 2012 NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675.
Shi, T., R. D. Bunker, S. Mattarocci, C. Ribeyre, M. Faty et al., 2013 Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 153: 1340-1353.
Shore, D., and A. Bianchi, 2009 Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J. 28: 2309-2322.
Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Smith, C. D., D. L. Smith, J. L. DeRisi, and E. H. Blackburn, 2003 Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell 14: 556-570.

Smith, S., and T. de Lange, 2000 Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10: 1299-1302.
Smogorzewska, A., and T. de Lange, 2004 Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73: 177-208.
Teng, S., J. Chang, B. McCowan, and V. A. Zakian, 2000 Telomeraseindependent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6: 947-952.
van Steensel, B., and T. de Lange, 1997 Control of telomere length by the human telomeric protein TRF1. Nature 385: 740-743.
Veldman, T., K. T. Etheridge, and C. M. Counter, 2004 Loss of hPot1 function leads to telomere instability and a cut-like phenotype. Curr. Biol. 14: 2264-2270.
Viggiani, C. J., and O. M. Aparicio, 2006 New vectors for simplified construction of BrdU-Incorporating strains of Saccharomyces cerevisiae. Yeast 23: 1045-1051.
Wellinger, R. J., and V. A. Zakian, 2012 Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 1073-1105.
Wotton, D., and D. Shore, 1997 A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11: 748-760.
Yamazaki, S., A. Ishii, Y. Kanoh, M. Oda, Y. Nishito et al., 2012 Rif1 regulates the replication timing domains on the human genome. EMBO J. 31: 3667-3677.
Zimmermann, M., F. Lottersberger, S. B. Buonomo, A. Sfeir, and T. de Lange, 2013 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science 339: 700-704.

Communicating editor: N. Hollingsworth

GENETICS

Supporting Information

www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.177899/-/DC1

Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

Hannah Kaizer, Carla J. Connelly, Kelsey Bettridge, Christopher Viggiani, and Carol W. Greider

Supporting Information

Figure S1. NAAIRS scanning mutagenesis identifies functional regions of RIF2. (A)-(F) The original Southern blots (Top) and western (bottom) for the NAAIRS screen are shown. In each gel two independent13xMyc tagged haploids are shown (+) and one untagged control of the same mutant (-). The Rif2-13xMyc tagged protein level was normalized to the actin loading control as described in the materials and methods. When discrepancies were found between independent transformants additional independent transformants were examined to determine the phenotype. The mutants were assayed as they were sequence verified, and thus the mutants are not in numerical order on these preliminary gels.

Figure S2. Tagging of RIF2 does not disrupt function. (A) The telomere length in the wild type $13 x$ Myc tagged RIF2 strains are similar to the untagged wild type strain. (B) The telomere length in the V 5 tagged RIF2 integrated at the endogenous RIF2 locus is similar to wild type. (C) Single amino acid mutations that show long telomeres were retested for protein telomere length and (D) for Rif2 protein expression level. The numbers below represent quantification of Rif2 levels, normalized to the PGK loading control, and then to the wild type RIF2 (See Materials and Methods).

Figure S3. Individual single amino acid changes across Rif2 N-terminus. (A)-(F). Each amino acid across the six N-terminal NAAIRS mutants: rif2-NAAIRS2, rif2-NAAIRS8, rif2-NAAIRS14, rif2-NAAIRS20, rif2-NAAIRS26, and rif2-NAAIRS32 were individually mutated and telomere length was measured and compared to rif2 4 and RIF2 telomere length on the same gel. For each amino acid change two independent transformants were measured.

Figure S4. Telomere length during passaging of cells expressing of RAP1-RIF260 fusion. Haploid segregants of RIF2, rif2 , or rif1 Δ mutants containing RAP1-RIF260 were grown for 4 consecutive passages in YPD broth. Telomere length at each passage was analyzed. The size markers on the side represent $k b$.

Figure S5. Telomerase is epistatic to RAP1-RIF260 fusion (A) Southern blot telomere analysis of RIF2, rif2 2 tlc1 1Δ, and rif2 Δ tlc1 Δ cells expressing the RAP1-RIF260 or no fusion protein. The genotype of the strain is indicated above each lane and the presence or absence of the fusion protein is shown with a + sign. (B) Southern blot telomere analysis of RIF2 RIF1, rif2 2 , t/c1 Δ, and rif2 2 t/c1 1Δ cells grown for additional generations. The higher bands that appear between $1-3 \mathrm{~kb}$ in the rif2 Δ t/c1 Δ cells represent the early emergence of telomerase null survivors (Chang et al. 2011; Ballew and Lundblad 2013; Hu et al. 2013). The shortest telomeres are longer in these rif 2Δ t/c1 Δ survivors. The size markers on the side represent kb

Figure S6. Expression of Rap1 ΔC without the BAT domain does not rescue telomere length. A rap1 ΔC truncation without the Rif260 BAT domain was expressed in in rif1 Δ, rif2 Δ, and rif1 Δ rif2 Δ cells and Southern blot telomere analysis was carried out. The genotype of the strain is indicated above each lane and the presence or absence of rap1 1 C truncation is shown with a + sign. The parental diploid was transformed with the fusion construct to yield the heterozyous diploid (Het. diploid) and was dissected for the haploid segregants. The size markers on the side represent kb.

Table S1 Yeast Strains 1: rif2NAAIRS mutants integrated at the URA3 locus

Strain	Genotype	Source
OAy1002	MATa ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 RAD5	Viggiani and Aparicio (2006)
OAy1003	MAT α ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 RAD5	Viggiani and Aparicio (2006)
CVy242	MATa/MAT α ade2-1/ade2-1 trp1-1/trp1-1 ura3-1/ura3-1 leu2-3,112/leu2-3,112 his3-11,15/his3-11,15 can1-100/can1-100 RAD5/RAD5	This study
CVy245	MATa/MAT α ade2-1/ade2-1 trp1-1/trp1-1 ura3-1/ura3-1 leu2-3,112/leu2-3,112 his3-11,15/his3-11,15 can1-100/can1-100 RAD5/RAD5 RIF2/rif2A::kanMX4	This study
CVy275	CVy245 ura3-1/ura3-1::(RIF2-URA3)	This study
HKy295, 296	CVy245 ura3-1/ura3-1::(rif2NAAIRS2-URA3)	This study
HKy297, 298	CVy245 ura3-1/ura3-1::(rif2NAAIRS8-URA3)	This study
HKy299, 300	CVy245 ura3-1/ura3-1::(rif2NAAIRS14-URA3)	This study
HKy342, 343	CVy245 ura3-1/ura3-1::(rif2NAAIRS20-URA3)	This study
HKy344, 345	CVy245 ura3-1/ura3-1::(rif2NAAIRS26-URA3)	This study
HKy301, 302	CVy245 ura3-1/ura3-1::(rif2NAAIRS32-URA3)	This study
HKy303, 304	CVy245 ura3-1/ura3-1::(rif2NAAIRS38-URA3)	This study
HKy346, 347	CVy245 ura3-1/ura3-1::(rif2NAAIRS44-URA3)	This study
KGy155 A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS50-URA3)	This study
KGy107 A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS56-URA3)	This study
KGy108 A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS62-URA3)	This study
KGy109 A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS68-URA3)	This study
HKy305, 306	CVy245 ura3-1/ura3-1::(rif2NAAIRS74-URA3)	This study
HKy348, 349	CVy245 ura3-1/ura3-1::(rif2NAAIRS80-URA3)	This study
HKy350, 351	CVy245 ura3-1/ura3-1::(rif2NAAIRS86-URA3)	This study
HKy352, 353	CVy245 ura3-1/ura3-1::(rif2NAAIRS92-URA3)	This study
HKy354, 355	CVy245 ura3-1/ura3-1::(rif2NAAIRS98-URA3)	This study
HKy356, 357	CVy245 ura3-1/ura3-1::(rif2NAAIRS104-URA3)	This study
HKy358, 359	CVy245 ura3-1/ura3-1::(rif2NAAIRS110-URA3)	This study
HKy307, 308	CVy245 ura3-1/ura3-1::(rif2NAAIRS116-URA3)	This study
HKy309, 310	CVy245 ura3-1/ura3-1::(rif2NAAIRS122-URA3)	This study
HKy311, 312	CVy245 ura3-1/ura3-1::(rif2NAAIRS128-URA3)	This study
KGy120A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS134-URA3)	This study
HKy314, 315	CVy245 ura3-1/ura3-1::(rif2NAAIRS140-URA3)	This study
KGy122A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS146-URA3)	This study
KGy123A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS152-URA3)	This study
KGy156A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS158-URA3)	This study
KGy124A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS164-URA3)	This study
KGy125A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS170-URA3)	This study
KGy126A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS182-URA3)	This study
KGy127A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS188-URA3)	This study
HKy316, 317	CVy245 ura3-1/ura3-1::(rif2NAAIRS194-URA3)	This study
HKy318, 319	CVy245 ura3-1/ura3-1::(rif2NAAIRS200-URA3)	This study

Strain	Genotype	Source
HKy320, 321	CVy245 ura3-1/ura3-1::(rif2NAAIRS206-URA3)	This study
НKу322, 323	CVy245 ura3-1/ura3-1::(rif2NAAIRS212-URA3)	This study
KGy132A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS218-URA3)	This study
HKy324, 325	CVy245 ura3-1/ura3-1::(rif2NAAIRS230-URA3)	This study
НKу326, 327	CVy245 ura3-1/ura3-1::(rif2NAAIRS236-URA3)	This study
НКу328, 329	CVy245 ura3-1/ura3-1::(rif2NAAIRS242-URA3)	This study
НKу330, 331	CVy245 ura3-1/ura3-1::(rif2NAAIRS248-URA3)	This study
KGy137A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS260-URA3)	This study
KGy138A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS266-URA3)	This study
HKy360, 361	CVy245 ura3-1/ura3-1::(rif2NAAIRS272-URA3)	This study
KGy139A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS278-URA3)	This study
KGy140A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS284-URA3)	This study
HKy362, 363	CVy245 ura3-1/ura3-1::(rif2NAAIRS290-URA3)	This study
HKy364, 365	CVy245 ura3-1/ura3-1::(rif2NAAIRS296-URA3)	This study
HKy366, 367	CVy245 ura3-1/ura3-1::(rif2NAAIRS302-URA3)	This study
HKy368, 369	CVy245 ura3-1/ura3-1::(rif2NAAIRS308-URA3)	This study
HKy370, 371	CVy245 ura3-1/ura3-1::(rif2NAAIRS314-URA3)	This study
HKy372, 373	CVy245 ura3-1/ura3-1::(rif2NAAIRS320-URA3)	This study
HKy332, 333	CVy245 ura3-1/ura3-1::(rif2NAAIRS326-URA3)	This study
НKу334, 335	CVy245 ura3-1/ura3-1::(rif2NAAIRS332-URA3)	This study
НKу336, 337	CVy245 ura3-1/ura3-1::(rif2NAAIRS338-URA3)	This study
НKу338, 339	CVy245 ura3-1/ura3-1::(rif2NAAIRS344-URA3)	This study
НKу340, 341	CVy245 ura3-1/ura3-1::(rif2NAAIRS350-URA3)	This study
НКу374, 375	CVy245 ura3-1/ura3-1::(rif2NAAIRS356-URA3)	This study
НKу376, 377	CVy245 ura3-1/ura3-1::(rif2NAAIRS362-URA3)	This study
НКу378, 379	CVy245 ura3-1/ura3-1::(rif2NAAIRS368-URA3)	This study
HKy382, 383	CVy245 ura3-1/ura3-1::(rif2NAAIRS374-URA3)	This study
KGy147A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS380-URA3)	This study
HKy380-381	CVy245 ura3-1/ura3-1::(rif2NAAIRS386-URA3)	This study
KGy148A, B	CVy245 ura3-1/ura3-1::(rif2NAAIRS392-URA3)	This study

Table S1 Yeast strain 1: rif2 NAAIRS mutants integrated at the URA3 locus
The diploid yeast strains for NAAIRS176, 224, and 254 integrated at the URA3 locus were inadvertently not saved, however, all the other strains and the haploid segregants for all of the NAAIRS mutants are available upon request.

Table S2 Yeast Strains 2: Epitope-tagged rif2 mutants

Strain	Genotype	Source
KGy149, 151	MAT α ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 RAD5 ura3-1::(RIF2-URA3)	This study
HKy385, 386	KGy149 ura3-1::(RIF2-13Myc-URA3)	This study
HKy393, 394	KGy149 ura3-1::(rif2NAAIRS2-13Myc-URA3)	This study
HKy387, 388	KGy149 ura3-1::(rif2NAAIRS8-13Myc-URA3)	This study
HKy401, 402	KGy149 ura3-1::(rif2NAAIRS14-13Myc-URA3)	This study
HKy405, 406	KGy149 ura3-1::(rif2NAAIRS20-13Myc-URA3)	This study
HKy407, 408	KGy149 ura3-1::(rif2NAAIRS26-13Myc-URA3)	This study
HKy395, 396	KGy149 ura3-1::(rif2NAAIRS32-13Myc-URA3)	This study
HKy409, 410	KGy149 ura3-1::(rif2NAAIRS44-13Myc-URA3)	This study
HKy403, 404	KGy149 ura3-1::(rif2NAAIRS74-13Мyc-URA3)	This study
HKy435, 436	KGy149 ura3-1::(rif2NAAIRS80-13Myc-URA3)	This study
HKy437, 438	KGy149 ura3-1::(rif2NAAIRS86-13Myc-URA3)	This study
HKy411, 412	KGy149 ura3-1::(rif2NAAIRS98-13Myc-URA3)	This study
HKy413, 414	KGy149 ura3-1::(rif2NAAIRS104-13Myc-URA3)	This study
HKy415, 416	KGy149 ura3-1::(rif2NAAIRS110-13Myc-URA3)	This study
HKy397, 398	KGy149 ura3-1::(rif2NAAIRS116-13Myc-URA3)	This study
HKy439, 440	KGy149 ura3-1::(rif2NAAIRS122-13Myc-URA3)	This study
HKy441, 442	KGy149 ura3-1::(rif2NAAIRS128-13Myc-URA3)	This study
HKy451, 452	KGy149 ura3-1::(rif2NAAIRS140-13Myc-URA3)	This study
HKy453, 454	KGy149 ura3-1::(rif2NAAIRS194-13Myc-URA3)	This study
HKy399, 400	KGy149 ura3-1::(rif2NAAIRS206-13Myc-URA3)	This study
HKy389, 390	KGy149 ura3-1::(rif2NAAIRS212-13Myc-URA3)	This study
HKy417, 418	KGy149 ura3-1::(rif2NAAIRS230-13Myc-URA3)	This study
HKy419, 420	KGy149 ura3-1::(rif2NAAIRS236-13Myc-URA3)	This study
HKy421, 422	KGy149 ura3-1::(rif2NAAIRS242-13Myc-URA3)	This study
HKy423, 424	KGy149 ura3-1::(rif2NAAIRS248-13Myc-URA3)	This study
HKy462, 463	KGy149 ura3-1::(rif2NAAIRS290-13Myc-URA3)	This study
HKy425, 426	KGy149 ura3-1::(rif2NAAIRS296-13Myc-URA3)	This study
Hky427, 428	KGy149 ura3-1::(rif2NAAIRS302-13Myc-URA3)	This study
HKy464, 465	KGy149 ura3-1::(rif2NAAIRS308-13Myc-URA3)	This study
HKy443, 444	KGy149 ura3-1::(rif2NAAIRS314-13Myc-URA3)	This study
HKy445, 446	KGy149 ura3-1::(rif2NAAIRS320-13Myc-URA3)	This study
HKy447, 448	KGy149 ura3-1::(rif2NAAIRS326-13Myc-URA3)	This study
HKy449, 450	KGy149 ura3-1::(rif2NAAIRS332-13Myc-URA3)	This study
HKy391, 392	KGy149 ura3-1::(rif2NAAIRS338-13Myc-URA3)	This study
HKy429, 430	KGy149 ura3-1::(rif2NAAIRS344-13Myc-URA3)	This study
HKy431, 432	KGy149 ura3-1::(rif2NAAIRS350-13Myc-URA3)	This study
HKy458, 459	KGy149 ura3-1::(rif2NAAIRS356-13Myc-URA3)	This study
HKy433, 434	KGy149 ura3-1::(rif2NAAIRS362-13Myc-URA3)	This study
HKy460, 461	KGy149 ura3-1::(rif2NAAIRS368-13Myc-URA3)	This study

Strain	Genotype	Source
HKy374	KGy149 ura3-1::(rif2NAAIRS374-13Myc-URA3)	This study
HKy455, 456	KGy149 ura3-1::(rif2NAAIRS386-13Myc-URA3)	This study
HKy466, 467	MAT α ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 RAD5	Dissection CVy245
HKy468, 469	MAT α ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 RAD5 rif2a:::kanMX4	Dissection CVy245
HKy470, 471	OAy1002 RIF2-V5-URA3	This study
HKy472, 473	OAy1002 rif2(S28A)-V5-URA3	This study
HKy474, 475	OAy1002 rif2(Y122A)-V5-URA3	This study
HKy476, 477	OAy1002 rif2(G124A)-V5-URA3	This study
HKy478, 479	OAy1002 rif2(I125A)-V5-URA3	This study
HKy480, 481	OAy1002 rif2(R127A)-V5-URA3	This study
HKy482, 483	OAy1002 rif2(D126A)-V5-URA3	This study
HKy498, 499	OAy1002 rif2(L39A)-V5-URA3	This study
HKy500, 501	OAy1002 rif2(R40A)-V5-URA3	This study
HKy502, 503	OAy1002 rif2(K41A)-V5-URA3	This study
HKy504, 505	OAy1002 rif2(V38A)-V5-URA3	This study
HKy506, 507	OAy1002 rif2(L47A)-V5-URA3	This study
HKy508, 509	OAy1002 rif2(K269A)-V5-URA3	This study
HKy510, 511	OAy1002 rif2(N43A)-V5-URA3	This study
HKy512, 513	OAy1002 rif2(I233A)-V5-URA3	This study
HKy514, 515	OAy1002 rif2(L44A)-V5-URA3	This study
HKy516, 517	OAy1002 rif2(H120A)-V5-URA3	This study
HKy518, 519	OAy1002 rif2(I233C)-V5-URA3	This study
HKy520, 521	OAy1002 rif2(F8A)-V5-URA3	This study
HKy522, 523	OAy1002 rif2(A9F)-V5-URA3	This study
HKy524, 525	OAy1002 rif2(P10A)-V5-URA3	This study
HKy526, 527	OAy1002 rif2(I11A)-V5-URA3	This study
HKy528, 529	OAy1002 rif2(R12A)-V5-URA3	This study
HKy531, 532	OAy1002 rif2(R13A)-V5-URA3	This study
HKy538, 539	OAy1002 rif2(S14A)-V5-URA3	This study
HKy540, 541	OAy1002 rif2(K15A)-V5-URA3	This study
HKy542, 543	OAy1002 rif2(K16A)-V5-URA3	This study
HKy549, 550	OAy1002 rif2(V17A)-V5-URA3	This study
HKy544, 545	OAy1002 rif2(V18A)-V5-URA3	This study
HKy546, 547	OAy1002 rif2(D19A)-V5-URA3	This study
HKy555, 556	OAy1002 rif2(S20A)-V5-URA3	This study
HKy557, 558	OAy1002 rif2(D21A)-V5-URA3	This study
HKy559, 560	OAy1002 rif2(K22A)-V5-URA3	This study
HKy561, 562	OAy1002 rif2(I23A)-V5-URA3	This study
HKy563, 564	OAy1002 rif2(V24A)-V5-URA3	This study
HKy565, 566	OAy1002 rif2(K25A)-V5-URA3	This study
HKy567, 568	OAy1002 rif2(V45A)-V5-URA3	This study
HKy659, 570	OAy1002 rif2(P46A)-V5-URA3	This study

Table S2, continued

Strain	Genotype	Source
HKy571, 572	OAy1002 rif2(I47A)-V5-URA3	This study
HKy573, 574	OAy1002 rif2(K48A)-V5-URA3	This study
HKy575, 576	OAy1002 rif2(K49A)-V5-URA3	This study
HKy577, 578	OAy1002 rif2(E2A)-V5-URA3	This study
HKy579, 580	OAy1002 rif2(H3A)-V5-URA3	This study
HKy581, 582	OAy1002 rif2(V4A)-V5-URA3	This study
HKy583, 584	OAy1002 rif2(D5A)-V5-URA3	This study
HKy585, 586	OAy1002 rif2(S6A)-V5-URA3	This study
HKy587, 588	OAy1002 rif2(D7A)-V5-URA3	This study
HKy589, 590	OAy1002 rif2(A26F)-V5-URA3	This study
HKy591, 592	OAy1002 rif2(I27A)-V5-URA3	This study
HKy593, 594	OAy1002 rif2(D29A)-V5-URA3	This study
HKy595, 596	OAy1002 rif2(D30A)-V5-URA3	This study
HKy597, 598	OAy1002 rif2(L31A)-V5-URA3	This study
HKy599, 600	OAy1002 rif2(E32A)-V5-URA3	This study
HKy601, 602	OAy1002 rif2(Q33A)-V5-URA3	This study
HKy603, 604	OAy1002 rif2(K34A)-V5-URA3	This study
HKy605, 606	OAy1002 rif2(N35A)-V5-URA3	This study
HKy607, 608	OAy1002 rif2(F36A)-V5-URA3	This study
HKy609, 610	OAy1002 rif2(T37A)-V5-URA3	This study
HKy548	OAy1002 rif2a : KanMX4	This study

Table S3 Yeast Strains 3: RAP1-RIF2 fusions integrated at the RAP1 locus

Strain	Genotype	Source
HKy551, 552	CVy242 RIF2/rif24::kanMX4 RAP1/rap1::(RAP1-RIF2 $60-$ URA3)	This study
HKy621, 622	CVy242 RIF2/rif2A::kanMX4 RIF1/rif1汭LEU2 RAP1/rap1::(RAP1-RIF2 6_{60}-URA3)	This study
HKy639		This study
HKy662, 663	HKy639 RAP1/rap1::(RAP1-rif2 60 [F8A]-URA3)	This study
HKy782, 783	HKy639 RAP1/rap1::(RAP1-rif2 $\left.6_{60}[F 8 W]-U R A 3\right)$	This study
HKy796, 797	HKy639 RAP1/rap1::(RAP1-rif2 ${ }_{60}$ [F8Y]-URA3)	This study
HKy768, 769		This study
HKy754, 755		This study
HKy736, 737	HKy639 RAP1/rap1::(RAP1-RIF2 ${ }_{36}$-URA3)	This study
YCC115	MATa/MATa his3 $31 /$ his3 31 leu2 $20 / l e u 2 \Delta 0$ lys2 $00 / l y s 2 \Delta 0$ met15 $40 / m e t 15 \Delta 0$ trp1463/trp1463 TLC1/tlc1a::LEU2	This study
HKy668, 669	CVy242 RIF2/rif2A::kanMX4 RAP1/rap1::(RAP1-RIF260-URA3) TLC1/tlc1a::LEU2	This study
JHUy912	MATa/MAT α his3 $31 / h i s 3 \Delta 1$ leu2 $20 / l e u 2 \Delta 0$ lys2 $20 / l y s 2 \Delta 0$ met15 $50 / m e t 15 \Delta 0$ trp1 $463 / \operatorname{trp1\Delta 63~ura3\Delta 0/ura3\Delta 0~XRS2/xrs2::xrs2\Delta Ct-13myc-kanMX6~}$ RIF2/rif2ム::LEU2	This study
HKy688, 689	JHUy912 RAP1/rap1::(RAP1-RIF2 6_{60}-URA3)	This study

Table S4: Primers used in the construction of rif2 NAAIRS mutants

rif2 mutant	Primer name	Sequence (5' to 3')
WT	Rif2-up	CTGACATGGTTTTCATACAC
WT	Rif2-down	CAGCAACCAAATCCAAGTCCTAG
WT	Rif2-forward	ATATAGATATAAATACGAACGTGGTTAGTATATAGAGACACGGATCCCCGG GTTAATTAA
WT	Rif2-reverse	TCTTTGTATTGTTCGAACTCTTTCAAAAGACCTTGGTAATGAATTCGAGCTC GTTTAAAC
NAAIRS 2	NAAIRS 2 reverse	CCTTATAGGTGCAAACGATCGTATAGCATCATTCATTGTCTCTATATA
	Anti-NAAIRS 2 forward	TATATAGAGACAATGAATGCTGCTATACGATCGTTTGCACCTATAAGG
NAAIRS 8	NAAIRS 8 reverse	AACAACCTTTTTCGACGATCGTATAGCATCATTATCGGAATCTACATG
	Anti-NAAIRS 8 forward	CATGTAGATTCCGATAATGCTGCTATACGATCGTCGAAAAAGGTTGTT
NAAIRS 14	NAAIRS 14 reverse	CACAATCTTGTCACTCGATCGTATAGCATCATTTCTCCTTATAGGTGC
	Anti-NAAIRS 14 forward	GCACCTATAAGGAGAAATGCTGCTATACGATCGAGTGACAAGATTGTG
NAAIRS 20	NAAIRS 20 reverse	ATCATCGCTTATTGCCGATCGTATAGCATCATTGTCAACAACCTTTTT
	Anti-NAAIRS 20 forward	AAAAAGGTTGTTGACAATGCTGCTATACGATCGGCAATAAGCGATGAT
NAAIRS 26	NAAIRS 26 reverse	AAAATTTTTTTGCTCCGATCGTATAGCATCATTTTTCACAATCTTGTC
	Anti-NAAIRS 26 forward	GACAAGATTGTGAAAAATGCTGCTATACGATCGGAGCAAAAAAATTTT
NAAIRS 32	NAAIRS 32 reverse	CAACTTTCTCAGTACCGATCGTATAGCATCATTCAAATCATCGCTTAT
	Anti-NAAIRS 32 forward	ATAAGCGATGATTTGAATGCTGCTATACGATCGGTACTGAGAAAGTTG
NAAIRS 38	NAAIRS 38 reverse	TTTAATTGGAACAAGCGATCGTATAGCATCATTAGTAAAATTTTTTTG
	Anti-NAAIRS 38 forward	CAAAAAAATTTTACTAATGCTGCTATACGATCGCTTGTTCCAATTAAA
NAAIRS 44	NAAIRS 44 reverse	TGGGCTGCTAACACTCGATCGTATAGCATCATTGTTCAACTTTCTCAG
	Anti-NAAIRS 44 forward	CTGAGAAAGTTGAACAATGCTGCTATACGATCGAGTGTTAGCAGCCCA
NAAIRS 50	NAAIRS 50 reverse	ACTCGGCTTACACACCGATCGTATAGCATCATTTTTTTTAATTGGAAC
	Anti-NAAIRS 50 forward	GTTCCAATTAAAAAAAATGCTGCTATACGATCGGTGTGTAAGCCGAGT
NAAIRS 56	NAAIRS 56 reverse	CACTCGCTCCTTAACCGATCGTATAGCATCATTCTTTGGGCTGCTAAC
	Anti-NAAIRS 56 forward	GTTAGCAGCCCAAAGAATGCTGCTATACGATCGGTTAAGGAGCGAGTG
NAAIRS 62	NAAIRS 62 reverse	CTGGTAGAAAACATGCGATCGTATAGCATCATTTGGACTCGGCTTACA
	Anti-NAAIRS 62 forward	TGTAAGCCGAGTCCAAATGCTGCTATACGATCGCATGTTTTCTACCAG
NAAIRS 68	NAAIRS 68 reverse	GGCCATTGATTTGAACGATCGTATAGCATCATTGTCCACTCGCTCCTT
	Anti-NAAIRS 68 forward	AAGGAGCGAGTGGACAATGCTGCTATACGATCGTTCAAATCAATGGCC
NAAIRS 74	NAAIRS 74 reverse	GGTGCCTAGCTCTTGCGATCGTATAGCATCATTCTTCTGGTAGAAAAC
	Anti-NAAIRS 47 forward	GTTTTCTACCAGAAGAATGCTGCTATACGATCGCAAGAGCTAGGCACC
NAAIRS 80	NAAIRS 80 reverse	GCTTATTGACAAATACGATCGTATAGCATCATTCAAGGCCATTGATTT
	Anti-NAAIRS 80 forward	AAATCAATGGCCTTGAATGCTGCTATACGATCGTATTTGTCAATAAGC
NAAIRS 86	NAAIRS 86 reverse	ACTTAAGCTCGGAACCGATCGTATAGCATCATTATTGGTGCCTAGCTC
	Anti-NAAIRS 86 forward	GAGCTAGGCACCAATAATGCTGCTATACGATCGGTTCCGAGCTTAAGT
NAAIRS 92	NAAIRS 92 reverse	ATTTTTTGAAAGAAACGATCGTATAGCATCATTGTAGCTTATTGACAA
	Anti-NAAIRS 92 forward	TTGTCAATAAGCTACAATGCTGCTATACGATCGTTTCTTTCAAAAAAT
NAAIRS 98	NAAIRS 98 reverse	ATTTTTCATACTCCTCGATCGTATAGCATCATTCTTACTTAAGCTCGG
	Anti-NAAIRS 98 forward	CCGAGCTTAAGTAAGAATGCTGCTATACGATCGAGGAGTATGAAAAAT
NAAIRS 104	NAAIRS 104 reverse	GTCGAAGAAAACGATCGATCGTATAGCATCATTAAGATTTTTTGAAAG
	Anti-NAAIRS 104 forward	CTTTCAAAAAATCTTAATGCTGCTATACGATCGATCGTTTTCTTCGAC
NAAIRS 110	NAAIRS 110 reverse	GTGTATATGTTCAACCGATCGTATAGCATCATTACAATTTTTCATACT
	Anti-NAAIRS 110 forward	AGTATGAAAAATTGTAATGCTGCTATACGATCGGTTGAACATATACAC
NAAIRS 116	NAAIRS 116 reverse	GTCGATACCAGCATACGATCGTATAGCATCATTTTTGTCGAAGAAAAC
	Anti-NAAIRS 116 forward	GTTTTCTTCGACAAAAATGCTGCTATACGATCGTATGCTGGTATCGAC
NAAIRS 122	NAAIRS 122 reverse	TGTTTCTGAAACTGCCGATCGTATAGCATCATTTTGGTGTATATGTTC
	Anti-NAAIRS 122 forward	GAACATATACACCAAAATGCTGCTATACGATCGGCAGTTTCAGAAACA
NAAIRS 128	NAAIRS 128 reverse	TATATCGACTAAAGACGATCGTATAGCATCATTACGGTCGATACCAGC
	Anti-NAAIRS 128 forward	GCTGGTATCGACCGTAATGCTGCTATACGATCGTCTTTAGTCGATATA
NAAIRS 134	NAAIRS 134 reverse	TTCTATAATTACGACCGATCGTATAGCATCATTCAGTGTTTCTGAAAC
	Anti-NAAIRS 134 forward	GTTTCAGAAACACTGAATGCTGCTATACGATCGGTCGTAATTATAGAA
NAAIRS 140	NAAIRS 140 reverse	CATTAAGTAGTCATTCGATCGTATAGCATCATTATTTATATCGACTAA
	Anti-NAAIRS 140 forward	TTAGTCGATATAAATAATGCTGCTATACGATCGAATGACTACTTAATG

Table S4, continued

rif2 mutant	Primer name	Sequence (5' to 3')
NAAIRS 146	NAAIRS 146	TGATTGAATACCCTCC
	An	GTAATTATAGAAATGAAT
NAAIRS 152	NAAIRS 152 reverse	ACATTCTTTTGATTTCGATCGTATAGCATCATTTTTCATTAAGTAGTC
	Anti-NAAIRS 152 forward	GACTACTTAATGAAAAATGCTGCTATACGATCGAAATCAAAAGAATGT
NAAIRS 158	NAAIRS 158 reverse	CTGCCCCATTGACTCCGATCGTATAGCATCATTGCTTGATTGAATACC
		GG
NAAIRS 164	NA	TTGTCCGCTATATGACGATCGTATAGCATCATTGATACATTCTTTTGA
	Anti-NAAIRS 164 forward	TCAAAAGAATGTATCAATGCTGCTATACGATCGTCATATAGCGGACAA
NAAIRS 170	NAAIRS 170 reverse	ACTAGCTTCGAAATCCGATCGTATAGCATCATTAGCCTGCCCCATTGA
	Anti-NAAIRS 170 forward	TCAATGGGGCAGGCTAATGCTGCTATACGATCGGATTTCGAAGCTAGT
NAAIRS 176	NAAIRS 176 revers	GTGATTTGAAGGTTTCGATCGTATAGCATCATTTAGTTGTCCGCTATA
	Anti-NAAIRS 176 forward	TATAGCGGACAACTAAATGCTGCTATACGATCGAAACCTTCAAATCAC
NAAIRS 182	NAAIRS 182 reverse	CATCATTAGGTCAGACGATCGTATAGCATCATTTTCACTAGCTTCGAA
	Anti-NAAIRS 182 forward	TTCGAAGCTAGTGAAAATGCTGCTATACGATCGTCTGACCTAATGATG
NAAIRS 188	NAAIRS 188 reverse	TATTTTCCTCATAACCGATCGTATAGCATCATTCGTGTGATTTGAAGG
	Anti-NAAIRS 188 for	CCTTCAAATCACACGAATGCTGCTATACGATCGGTTATGAGGAAAATA
NAAIRS 194	NAAIRS 194 reverse	GATACTTTCGTCATTCGATCGTATAGCATCATTCATCATCATTAGGTC
	Anti-NAAIRS 194 forward	GACCTAATGATGATGAATGCTGCTATACGATCGAATGACGAAAGTATC
NAAIRS 200	NAAIRS 200 reverse	GAAGTAGACAATATGCGATCGTATAGCATCATTATTTATTTTCCTCAT
	Anti-NAAIRS 200 for	TC
NAAIRS 206	NAAIRS 206 reverse	ATCTAATTGTTCGAACGATCGTATAGCATCATTATCGATACTTTCGTC
	Anti-NAAIRS 206 forw	GACGAAAGTATCGATAATGCTGCTATACGATCGTTCGAACAATTAGAT
NAAIRS 212	NAAIRS 212 reverse	AGTTGAAGTAGATAACGATCGTATAGCATCATTTTTGAAGTAGACAAT
	Anti-NAAIRS 212 forward	ATTGTCTACTTCAAAAATGCTGCTATACGATCGTTATCTACTTCAACT
NAAIRS 218	NAAIRS 218	CTTCGAAGGTTCTATCGATCGTATAGCATCATTTTTATCTAATTGTTC
	Anti-NAAIRS 218 forward	GAACAATTAGATAAAAATGCTGCTATACGATCGATAGAACCTTCGAAG
NAAIRS 224	NAAIRS 224 reverse	ATTGATAAATTCGGTCGATCGTATAGCATCATTTATAGTTGAAGTAGA
	Anti-NAAIRS 224 forward	TCTACTTCAACTATAAATGCTGCTATACGATCGACCGAATTTATCAAT
NAAIRS 230	NAAIRS 230 reverse	TTCAAGTACCGATAACGATCGTATAGCATCATTAAGCTTCGAAGGTTC
	Anti-NAAIRS 230 for	A
NAAIRS 236	NAAIRS 236 rev	TGCAATGTTATTACTCGATCGTATAGCATCATTAACATTGATAAATTC
	Anti-NAAIRS 236 forward	GAATTTATCAATGTTAATGCTGCTATACGATCGAGTAATAACATTGCA
NAAIRS 242	NAAIRS 242 reverse	ATAAATGAGGACCTTCGATCGTATAGCATCATTTTTTTCAAGTACCGA
	Anti-NAAIRS 242 forward	TCGGTACTTGAAAAAAATGCTGCTATACGATCGAAGGTCCTCATTTAT
NAAIRS 248	NAAIRS 248 reverse	AATGCTAACGTTATTCGATCGTATAGCATCATTAAATGCAATGTTATT
	Anti-NAAIRS 248 forward	AATAACATTGCATTTAATGCTGCTATACGATCGAATAACGTTAGCATT
NAAIRS 254	NAAIRS 254 rev	TGTCGATAGGAGAGACGATCGTATAGCATCATTTGAATAAATGAGGAC
	Anti-NAAIRS 254 forward	GTCCTCATTTATTCAAATGCTGCTATACGATCGTCTCTCCTATCGACA
NAAIRS 260	NAAIRS 260	GAGTTTCTTTTTGAGCGATCGTATAGCATCATTCGAAATGCTAACGTT
	Anti-NAAIRS 260 forward	AACGTTAGCATTTCGAATGCTGCTATACGATCGCTCAAAAAGAAACTC
NAAIRS 266	NAAIRS 266 rev	CACAGTATATTTTGTCGATCGTATAGCATCATTGGATGTCGATAGGAG
	Anti-NAAIRS 266 forward	CTCCTATCGACATCCAATGCTGCTATACGATCGACAAAATATACTGTG
NAAIRS 272	NAAIRS 272 reverse	TAATATCGGCATCTCCGATCGTATAGCATCATTGTTGAGTTTCTTTTT
	Anti-NAAIRS 272 forw	AAAAAGAAACTCAACAATGCTGCTATACGATCGGAGATGCCGATATTA
NAAIRS 278	NAAIR	TTGTTCTTGAGCGCACGATCGTATAGCATCATTAAACACAGTATATTT
	Anti-NAAIRS 278 forward	AAATATACTGTGTTTAATGCTGCTATACGATCGTGCGCTCAAGAACAA
NAAIRS 284	NAAIRS 284 reverse	CATTTTTTTCAAATACGATCGTATAGCATCATTTGTTAATATCGGCAT
	Anti-NAAIRS 284 forward	ATGCCGATATTAACAAATGCTGCTATACGATCGTATTTGAAAAAAATG
NAAIRS 290	NAAIRS 290 reverse	ATCAAAGGTAAACTTCGATCGTATAGCATCATTTTCTTGTTCTTGAGC
	Anti-NAAIRS 290 forward	GCTCAAGAACAAGAAAATGCTGCTATACGATCGAAGTTTACCTTTGAT
NAAIRS 296	NAAIRS 296 reverse	TAATAACTTGCTTCCCGATCGTATAGCATCATTTATCATTTTTTTCAA
	Anti-NAAIRS 296 forward	TTGAAAAAAATGATAAATGCTGCTATACGATCGGGAAGCAAGTTATTA
NAAIRS 302	NAAIRS 302 reverse	AAGCGAGTTGTAAGACGATCGTATAGCATCATTGGAATCAAAGGTAAA
	Anti-NAAIRS 302 forwa	attccaitac

Table S4, continued

rif2 mutant	Primer name	Sequence (5’ to 3')
NAAIRS 308	NAAIRS 308 reverse	ATTCAACTGGCATGTCGATCGTATAGCATCATTCTGTAATAACTTGCT
	Anti-NAAIRS 308 forward	AGCAAGTTATTACAGAATGCTGCTATACGATCGACATGCCAGTTGAAT
NAAIRS 314	NAAIRS 314 reverse	TAAGTTGGATTCTTTCGATCGTATAGCATCATTGACAAGCGAGTTGTA
	Anti-NAAIRS 314 forward	TACAACTCGCTTGTCAATGCTGCTATACGATCGAAAGAATCCAACTTA
NAAIRS 320	NAAIRS 320 reverse	AAATTCGAAAAAGATCGATCGTATAGCATCATTATTATTCAACTGGCA
	Anti-NAAIRS 320 forward	TGCCAGTTGAATAATAATGCTGCTATACGATCGATCTTTTTCGAATTT
NAAIRS 326	NAAIRS 326 reverse	GTGCGGAAAGACCTTCGATCGTATAGCATCATTTGCTAAGTTGGATTC
	Anti-NAAIRS 326 forward	GAATCCAACTTAGCAAATGCTGCTATACGATCGAAGGTCTTTCCGCAC
NAAIRS 332	NAAIRS 332 reverse	AAACAAATAGGTAAACGATCGTATAGCATCATTCAAAAATTCGAAAAA
	Anti-NAAIRS 332 forward	TTTTTCGAATTTTTGAATGCTGCTATACGATCGTTTACCTATTTGTTT
NAAIRS 338	NAAIRS 338 reverse	AATCTCAGTGTAAGCCGATCGTATAGCATCATTAGGGTGCGGAAAGAC
	Anti-NAAIRS 338 forward	GTCTTTCCGCACCCTAATGCTGCTATACGATCGGCTTACACTGAGATT
NAAIRS 344	NAAIRS 344 reverse	AGTTCTACTCTGGACCGATCGTATAGCATCATTGTTAAACAAATAGGT
	Anti-NAAIRS 344 forward ACCTATTTGTTTAACAATGCTGCTATACGATCGGTCCAGAGTAGAACT	
NAAIRS 350	NAAIRS 350 reverse	ATCCAACAATTCATCCGATCGTATAGCATCATTTATAATCTCAGTGTA
	Anti-NAAIRS 350 forward	TACACTGAGATTATAAATGCTGCTATACGATCGGATGAATTGTTGGAT
NAAIRS 356	NAAIRS 356 reverse	CAGTCTGTTTCTGATCGATCGTATAGCATCATTAAAAGTTCTACTCTG
	Anti-NAAIRS 356 forward	CAGAGTAGAACTTTTAATGCTGCTATACGATCGATCAGAAACAGACTG
NAAIRS 362	NAAIRS 362 reverse	TGGGTAATTTTTTATCGATCGTATAGCATCATTCTTATCCAACAATTC
	Anti-NAAIRS 362 forward	GAATTGTTGGATAAGAATGCTGCTATACGATCGATAAAAAATTACCCA
NAAIRS 368	NAAIRS 368 reverse	AAAGTTATAAGCACTCGATCGTATAGCATCATTTGTCAGTCTGTTTCT
	Anti-NAAIRS 368 forward	AGAAACAGACTGACAAATGCTGCTATACGATCGAGTGCTTATAACTTT
NAAIRS 374	NAAIRS 374 reverse	AAGACGCTGGTTTTTCGATCGTATAGCATCATTATGTGGGTAATTTTT
	Anti-NAAIRS 374 forward	AAAAATTACCCACATAATGCTGCTATACGATCGAAAAACCAGCGTCTT
NAAIRS 380	NAAIRS 380 reverse	TCGAGTTAACTTAAGCGATCGTATAGCATCATTCTTAAAGTTATAAGC
	Anti-NAAIRS 380 forward	GCTTATAACTTTAAGAATGCTGCTATACGATCGCTTAAGTTAACTCGA
NAAIRS 386	NAAIRS 386 reverse	TTATCTATCATGTACCGATCGTATAGCATCATTTGGAAGACGCTGGTT
	Anti-NAAIRS 386 forward AACCAGCGTCTTCCAAATGCTGCTATACGATCGGTACATGATAGATAA	
NAAIRS 392	NAAIRS 392 reverse	TCAAAAGACCTTGGTTTACGATCGTATAGCAGCATTTTTTCGAGTTAACTT
	Anti-NAAIRS 392 forward AAGTTAACTCGAAAAAATGCTGCTATACGATCGTAAACCAAGGTCTTTTGA	

Table S5: Primers for epitope-tagged rif2 mutants

Primer Name	Sequence (5' to 3')	Primer Description
Myc F	GCGTCTTCCACTTAAGTTAACTCGAAAAGTACATGATAGACGGATCCCCGGGTT AATTAA	Tagging of NAAIRS
Myc R	CGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGGAATTCGAGCTC GTTTAAAC	mutants
HK3	TACCTTTGATTCCGGAAGCAAGTTATT	
HK4	AGGCTTACCACCACCACCACCACCACCACCACCTCTATCATGTACTTTTCG	
HK5	CATGATAGAGGTGGTGGTGGTGGTGGTGGTGGTGGTAAGCCTATCCCTAAC	
HK6	GGTGGCGGCCGCTCTAGAACGTAGAATCGAGACCGAG	
HK7	CTCGGTCTCGATTCTACGTTCTAGAGCGGCCGCCACCG	
HK9	TGGCACGACAGGTTTCCCGACTGGAAA	
HK16	CTAATCAAGTTTTTTGGGGTCGAGGTG	Used for inserting the V5
HK17	ACGGAGGTGGGGTACCCAATTCGCCCTA	tag upstream of RIf2 via
HK18	TTGGGTACCCCACCTCCGTTGTCTCTA	overlap extension
HK19	TTCTGTACACCATTCGGCGTTCTGCTG	method
HK20	GCCGAATGGTGTACAGAAGGGATCTTC	
HK15	GGTTCAACTTTCTCAGTACAGTAAAAT	
HK113	CCAAAAATTTCAGCAGAACGCCGAATGGTGATCAATTGAATAAATTGGTAAACT TCAC	
HK114	GATGGTTAAGAAGATCCCTTCTGTACATATCTGTAAGCGCAATGTTTTCTTCATT G	
HK65	GCATGTAGATTCCGATGCCGCACCTATAAGGAGATC	Site-directed mutagenesis 5' primer for Rif2F8A
HK66	GATCTCCTTATAGGTGCGGCATCGGAATCTACATGC	Site-directed mutagenesis 3' primer for Rif2F8A
HK67	GAGCATGTAGATTCCGATTTTTTCCCTATAAGGAGATCGAAAAAG	Site-directed mutagenesis 5' primer for Rif2A9F
HK68	CTTTTTCGATCTCCTTATAGGGAAAAAATCGGAATCTACATGCTC	Site-directed mutagenesis 3' primer for Rif2A9F
HK69	GTAGATTCCGATTTTGCAGCCATAAGGAGATCGAAAAAG	Site-directed mutagenesis 5' primer for Rif2P10A
HK70	CTTTTTCGATCTCCTTATGGCTGCAAAATCGGAATCTAC	Site-directed mutagenesis 3' primer for Rif2P10A
HK71	GATTCCGATTTTGCACCTGCAAGGAGATCGAAAAAGG	Site-directed mutagenesis 5' primer for Rif2111A
HK72	CCTTTTTCGATCTCCTTGCAGGTGCAAAATCGGAATC	Site-directed mutagenesis 3' primer for Rif2l11A
HK73	GATTCCGATTTTGCACCTATAGCGAGATCGAAAAAGGTTGTTG	Site-directed mutagenesis 5' primer for Rif2R12A
HK74	CAACAACCTTTTTCGATCTCGCTATAGGTGCAAAATCGGAATC	Site-directed mutagenesis 3' primer for Rif2R12A
HK75	GATTTTGCACCTATAAGGGCATCGAAAAAGGTTGTTG	Site-directed mutagenesis 5' primer for Rif2R13A
HK76	CAACAACCTTTTTCGATGCCCTTATAGGTGCAAAATC	Site-directed mutagenesis 3' primer for Rif2R13A
HK77	GATTTTGCACCTATAAGGAGAGCAAAAAAGGTTGTTGACAGTGAC	Site-directed mutagenesis 5' primer for Rif2S14A
HK78	GTCACTGTCAACAACCTTTTTTGCTCTCCTTATAGGTGCAAAATC	Site-directed mutagenesis 3' primer for Rif2S14A
HK79	CACCTATAAGGAGATCGGCAAAGGTTGTTGACAGTG	Site-directed mutagenesis 5' primer for Rif2K15A
HK80	CACTGTCAACAACCTTTGCCGATCTCCTTATAGGTG	Site-directed mutagenesis 3' primer for Rif2K15A
HK81	CTATAAGGAGATCGAAAGCGGTTGTTGACAGTGAC	Site-directed mutagenesis 5' primer for Rif2K16A
HK82	GTCACTGTCAACAACCGCTTTCGATCTCCTTATAG	Site-directed mutagenesis 3' primer for Rif2K16A
HK83	CTATAAGGAGATCGAAAAAGGCTGTTGACAGTGACAAGATTG	Site-directed mutagenesis 5' primer for Rif2V17A

Primer Name	Sequence (5' to 3')	Primer Description
HK84	CAATCTTGTCACTGTCAACAGCCTTTTTCGATCTCCTTATAG	Site-directed mutagenesis 3' primer for Rif2V17A
HK85	GGAGATCGAAAAAGGTTGCTGACAGTGACAAGATTGTG	Site-directed mutagenesis 5' primer for Rif2V18A
HK86	CACAATCTTGTCACTGTCAGCAACCTTTTTCGATCTCC	Site-directed mutagenesis 3' primer for Rif2V18A
HK87	GAGATCGAAAAAGGTTGTTGCTAGTGACAAGATtGTGAAAGC	Site-directed mutagenesis 5' primer for Rif2D19A
HK88	GCTTTCACAATCTTGTCACTAGCAACAACCTTTTTCGATCTC	Site-directed mutagenesis 3' primer for Rif2D19A
HK21	GTGAAAGCAATAGCCGATGATTTGGAG	Site-directed mutagenesis 5' primer for Rif2AA28
HK22	CTCCAAATCATCGGCTATTGCTTTCAC	Site-directed mutagenesis 3' primer for Rif2AA28
HK33	CAAAAAAATTTTACTGCCCTGAGAAAGTTGAACC	Site-directed mutagenesis 5' primer for Rif2V38A
HK34	GGTTCAACTTTCTCAGGGCAGTAAAATTTTTTTG	Site-directed mutagenesis 3' primer for Rif2V38A
HK35	GCAAAAAAATTTTACTGTAGCCAGAAAGTTGAACCTTGTTCC	Site-directed mutagenesis 5' primer for Rif2L39A
HK35	GGAACAAGGTTCAACTTTCTGGCTACAGTAAAATTTTTTTGC	Site-directed mutagenesis 3' primer for Rif2L39A
HK37	AAATTTTACTGTACTGGCAAAGTTGAACCTTGTTC	Site-directed mutagenesis 5' primer for Rif2R40A
HK38	GAACAAGGTTCAACTTTGCCAGTACAGTAAAATTT	Site-directed mutagenesis 3' primer for Rif2R40A
HK39	TTACTGTACTGAGAGCGTTGAACCTTGTTCC	Site-directed mutagenesis 5' primer for Rif2K41A
HK40	GGAACAAGGTTCAACGCTCTCAGTACAGTAA	Site-directed mutagenesis 3' primer for Rif2K41A
HK41	CTGTACTGAGAAAGGCGAACCTTGTTCCA	Site-directed mutagenesis 5' primer for Rif2L42A
HK42	TGGAACAAGGTTCGCCTTTCTCAGTACAG	Site-directed mutagenesis 3' primer for Rif2L42A
HK43	GTACTGAGAAAGTTGGCCCTTGTTCCAATTA	Site-directed mutagenesis 5' primer for Rif2N43A
HK44	TAATTGGAACAAGGGCCAACTTTCTCAGTAC	Site-directed mutagenesis 3' primer for Rif2N43A
HK51	GTACTGAGAAAGTTGAACGCCGTTCCAATTAAAAAAAG	Site-directed mutagenesis 5' primer for Rif2L44A
HK52	CTTTTTTTAATTGGAACGGCGTTCAACTTTCTCAGTAC	Site-directed mutagenesis 3' primer for Rif2L44A
HK23	GTTGÍAACATATACACCAAGCTGCTGGTATCGACCGTG	Site-directed mutagenesis 5' primer for Rif2AA122
HK24	CACGGTCGATACCAGCAGCTTGGTGTATATGTTCAAC	Site-directed mutagenesis 3' primer for Rif2AA122
HK25	CATATACACCAATATGCTGCTATCGACCGTGCAGTTTC	Site-directed mutagenesis 5' primer for Rif2AA124
HK26	GAAACTGCACGGTCGATAGCAGCATATTGGTGTATATG	Site-directed mutagenesis 3' primer for Rif2AA124
HK27	CATATACACCAATATGCTGGTGCCGACCGTGCAGTTTCAGAAAC	Site-directed mutagenesis 5' primer for Rif2AA125
HK28	GTTTCTGAAACTGCACGGTCGGCACCAGCATATTGGTGTATATG	Site-directed mutagenesis 3' primer for Rif2AA125
HK29	CCAATATGCTGGTATCGCCCGTGCAGTTTCAGAAAC	Site-directed mutagenesis 5' primer for Rif2AA126

Primer Name	Sequence (5' to 3')	Primer Description
HK30	GTTTCTGAAACTGCACGGGCGATACCAGCATATTGG	Site-directed mutagenesis 3' primer for Rif2AA126
HK31	CACCAATATGCTGGTATCGACGCTGCAGTTTCAGAAACACTGTC	Site-directed mutagenesis 5' primer for Rif2AA127
HK32	GACAGTGTTTCTGAAACTGCAGCGTCGATACCAGCATATTGGTG	Site-directed mutagenesis 3' primer for Rif2AA127
HK53	CTTCGAAGCTTACCGAATTTGCCAATGTTTTATCGGTACTTG	Site-directed mutagenesis 5' primer for Rif2l233A
HK54	CAAGTACCGATAAAACATTGGCAAATTCGGTAAGCTTCGAAG	Site-directed mutagenesis 3' primer for Rif2I233A
HK55	GAAGCTTACCGAATTTTGCAATGTTTTATCGGTAC	Site-directed mutagenesis 5' primer for Rlf2l233C
HK56	GTACCGATAAAACATTGCAAAATTCGGTAAGCTTC	Site-directed mutagenesis 3' primer for RIf2I233C
HK57	GACAAAGTTGAACATATAGCCCAATATGCTGGTATCG	Site-directed mutagenesis 5' primer for RIf2H120A
HK58	CGATACCAGCATATTGGGCTATATGTTCAACTTTGTC	Site-directed mutagenesis 3' primer for Rif2H120A
HK63	GATCATATTGTCTACTTCAAATTCCAACAATTAGATAAATTATCTACTTC	Site-directed mutagenesis 5' primer for Rif2E213Q
HK64	GAAGTAGATAATTTATCTAATTGTTGGAATTTGAAGTAGACAATATGATC	Site-directed mutagenesis 3' primer for Rif2E213Q
HK61	CGACATCCCTCAAAAAGGCACTCAACACAAAATATAC	Site-directed mutagenesis 5' primer for Rif2K269A
HK62	GTATATTTTGTGTTGAGTGCCTTTTTGAGGGATGTCG	Site-directed mutagenesis 3' primer for Rif2K269A

Table S6: Primers used in the construction of RAP1-RIF2 fusions at the RAP1 locus

Primer Name	Sequence (5' to 3')	Primer Description
HK89	CGGGGGATCCACTAGTTCTAGAGCGGCCGCGATCTGAT GGTCTTTCCTCGCTATTTCTTG	
HK90	CCTCACTAAAGGGAACAAAAGCTGGAGCTCTGCTAATGG	
	GATTCTATAAAACTGTTCCGC	Used to amplify the C-terminus of RAP1; to be
HK97	GATTTTTTGAGAAGGACCTGTTAGGTGGCGGAGGTGGC GGAGGTGGCGGAGGTATGGAGCATGTAGATTCCG	used in the construction of the RAP1-RIF2 ${ }_{60}$
HK98	CGGAATCTACATGCTCCATACCTCCGCCACCTCCGCCAC	
HK93	GCAGCCCAAAGGTGTGTAAGCCGAGTTTATTCAATTCAA TTCATCATTTTTTTTTTATTC	
HK94	GAATAAAAAAAAAATGATGAATTGAATTGAATAAACTCGG CTTACACACCTTTGGGCTGC	Used to construct the URA homology region for
HK95	CATATTTGAGAAGATGCGGCCAGCAAAACTAAGTAATTG aATTAAGTAACATCATTGTTTAAC	chromosome
HK96	GTTAAACAATGATGTTACTTAATTCAATTACTTAGTTTTGC TGGCCGCATCTTCTCAAATATG	
HK115	ACAATGTTAATCCTCCTCCCAAC	Forward primer for lifting out RAP1-RIF2 6_{60}
HK116	GCGTGACATAACTAATTACATGAAGATCTCTAACTCGGCT TACACACCTTTG	Reverse primer for lifting out RAP1-RIF2 ${ }_{60}$
HK117	CAAAGGTGTGTAAGCCGAGTTAGAGATCTTCATGTAATTA GTTATGTCACGC	Forward primer for CYC1 fragment
HK118	GAATAAAAAAAAAATGATGAATTGAATTGCAAATTAAAGC CTTCGAGCGTC	Reverse primer for CYC1 fragment
HK119	GACGCTCGAAGGCTTTAATTTGCAATTCAATTCATCATTT TTTTTTTATTC	Forward primer for lifting out part of URA3 promoter
HK120	TGCAGGTTTTTGTTCTGTGCAGTTG	Reverse primer for lifting out part of URA3 promoter
HK121	TAGAGATCTTCATGTAATTAGTTATG	Forward primer for making RAP1-RIF2 ${ }_{36}$ construct from RAP1-RIF2 ${ }_{60}$ construct
HK123	AAAATTTTTTTGCTCCAAATCATCGC	Reverse primer for making RAP1-RIF2 ${ }_{36}$ construct from RAP1-RIF2 ${ }_{60}$ construct
HK124	GCATGTAGATTCCGATTATGCACCTATAAGGAGATC	Forward primer for making F8Y construct
HK125	GATCTCCTTATAGGTGCATAATCGGAATCTACATGC	Reverse primer for making F8Y construct
HK126	CATGTAGATTCCGATTGGGCACCTATAAGGAGAT	Forward primer for making F8W construct
HK127	GATCTCCTTATAGGTGCCCAATCGGAATCTACATG	Reverse primer for making F8W construct
HK128	CGGGGGATCCACTAGTTCTAGAGCGGCCGCGATTGCAC GAGAATTTTTCAAGCATTTTGC	Forward primer for making rap1 ΔC fragment
HK129	ACCTCCGCCACCTCCGCCACCTCCGCCACCGGGCAAAC TATTTGAAATATTGGATAGATC	Reverse primer for making rap1 ΔC fragment in fusion
HK130	GATCTATCCAATATTTCAAATAGTTTGCCCGGTGGCGGA GGTGGCGGAGGTGGCGGAGGT	Forward primer for making RIF2 fragment for rap1 ΔC Gibson
HK131	CCTTTTCGGTTAGAGCGGATGTGGGAGGAGGGC	Reverse primer for making RIF2 fragment for rap1 1Δ Gibson
HK132	GCGTGACATAACTAATTACATGAAGATCTCTAGGGCAAA CTATTTGAAATATTGGATAG	Reverse primer for making rap1 1Δ c plasmid (forward primer is HK128)
HK133	GCGGTCAAGAAGCAGTTTTA	Forward primer for confirming rap1 ΔC construct at RAP1 locus
OCC85	ATTGCCATTGCAAAATCGTTTTTGTGGTCAATTTGCAATG AGATTGTACTGAGAGTGCAC	Deletion of RIF1
OCC86	ATTTATTGCCATTTTGATCTATTCTACATACTAACAATCAC TGTGCGGTATTTCACACCG	Deletion of RIF1
OCC122	TAGATATAAATACGAACGTGGTTAGTATATAGAGACAATG AGATTGTACTGAGAGTGCAC	Deletion of RIF2
OCC123	TTGTATTGTTCGAACTCTTTCAAAAGACCTTGGTAATTTA CTGTGCGGTATTTCACACCG	Deletion of RIF2
OCC168	GGTTCTGGTGGCATCTAT	Deletion of TLC1
OCC171	ATGCTTGCCGGAAAGCTG	Deletion of TLC1
Yprime FWD	CGCGAATTCGCCCTACAGCACTTCTACATAGC	Y' fragment for Southern analysis
Yprime REV	CGAGAATTCCAGCGTTTGCGTTCCATGACG	Y' fragment for Southern analysis

[^0]: Copyright © 2015 by the Genetics Society of America
 doi: 10.1534/genetics.115.177899
 Manuscript received May 4, 2015; accepted for publication August 19, 2015; published Early Online August 20, 2015.
 Available freely online through the author-supported open access option.
 Supporting information is available online at www.genetics.org/lookup/suppl/ doi:10.1534/genetics.115.177899/-/DC1.
 ${ }^{1}$ These authors contributed equally to this work.
 ${ }^{2}$ Present address: Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.
 ${ }^{3}$ Present address: National Institutes of Health, Office of Science Policy, Bethesda, MD 20817.
 ${ }^{4}$ Corresponding author: Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 603 Pre-Clinical Teaching Bldg., 725 N. Wolfe St., Baltimore, MD 21205. E-mail: cgreider@jhmi.edu

